02171nam0 2200469 i 450 VAN011401920230705100432.327N978813222559120180124d2015 |0itac50 baengIN|||| |||||ˆAn ‰introduction to ultrametric summability theoryP. N. Natarajan2. edNew DelhiSpringer2015XIII, 159 p.24 cm001VAN01025962001 SpringerBriefs in mathematics210 Berlin [etc.]SpringerVAN0234868ˆAn ‰Introduction to Ultrametric Summability Theory141004840-XXSequences, series, summability [MSC 2020]VANC020786MF12J25Non-Archimedean valued fields [MSC 2020]VANC022167MF32PxxNon-Archimedean analysis [MSC 2020]VANC023998MF40JxxSummability in abstract structures [MSC 2020]VANC031519MF46S10Functional analysis over fields other than ${\bf R}$ or ${\bf C}$ or the quaternions; non-Archimedean functional analysis [MSC 2020]VANC031520MFArchimedean axiomKW:KCanonical expansionKW:KDouble sequencesKW:KHahn-Banach theoremKW:KSchur's theoremKW:KThe Nörlund methodKW:KUltrametric valuationKW:Kp-adic numbersKW:KINNew DelhiVANL001098NatarajanPinnangudi N.VANV081418721163Springer <editore>VANV108073650ITSOL20240614RICAhttp://dx.doi.org/10.1007/978-81-322-2559-1E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN0114019BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08CONS e-book 0084 08eMF84 20180124 Introduction to ultrametric summability theory1410048UNICAMPANIA