01305nam a2200373 i 450099100196053970753620020507154512.0000117s1996 uk ||| | eng 0421539704b11589127-39ule_instLE02728114ExLDip.to Studi Giuridiciita344.407C-XIV/BDadomo, Christian528811The French legal system /by Christian Dadomo and Susan Farran2nd ed.London :Sweet & Maxwell,1996xlii, 256 p. :ill. ;22 cm.Includes bibliographical references and index.LawFranceDiritto FranceseGiustiziaAmministrazioneFranciaGiustizia, Amministrazione della FranciaLeggeFranciaProceduraDirittoFranciaFarran, Susanauthorhttp://id.loc.gov/vocabulary/relators/aut735067.b1158912721-09-0602-07-02991001960539707536LE027 C-XIV/B 231LE027-14le027-E0.00-l- 00000.i1179845202-07-02French legal system1451959UNISALENTOle02701-01-00ma -enguk 4102066nam0 2200469 i 450 VAN011343920230705022005.461N978331916613120180110d2015 |0itac50 baengCH|||| |||||Lie groups and geometric aspects of isometric actionsMarcos M. Alexandrino, Renato G. Bettiol[Cham]Springer2015X, 213 p.ill.24 cmVAN0235094Lie groups and geometric aspects of isometric action244055222-XXTopological groups, Lie groups [MSC 2020]VANC020459MF53C21Methods of global Riemannian geometry, including PDE methods; curvature restrictions [MSC 2020]VANC022960MF22E15General properties and structure of real Lie groups [MSC 2020]VANC023989MFCheeger deformationKW:KCohomogeneity one actionKW:KFrobenius theoremKW:KIsometric actionsKW:KLie AlgebrasKW:KLie groupsKW:KMaximal toripolar actionsKW:KPositive curvatureKW:KProper actionsKW:KRiemannian geometryKW:KWeyl groupKW:KCHChamVANL001889AlexandrinoMarcos M.VANV087553755578BettiolRenato G.VANV087554755579Springer <editore>VANV108073650ITSOL20240614RICAhttp://dx.doi.org/10.1007/978-3-319-16613-1E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN0113439BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08CONS e-book 0278 08eMF278 20180110 Lie groups and geometric aspects of isometric action2440552UNICAMPANIA