02279nam0 2200481 i 450 VAN011072120230801123548.180N978331963630620170915d2017 |0itac50 baengCH|||| |||||Ramanujan summation of divergent seriesBernard Candelpergher[Cham]Springer2017XXIII, 193 p.24 cm001VAN01022502001 Lecture notes in mathematics210 Berlin [etc.]Springer2185VAN0234302Ramanujan summation of divergent series146644211M06$\zeta (s)$ and $L(s, \chi)$ [MSC 2020]VANC019707MF40G05Cesàro, Euler, Nörlund and Hausdorff methods [MSC 2020]VANC023167MF30B50Dirichlet series, exponential series and other series in one complex variable [MSC 2020]VANC025275MF11M35Hurwitz and Lerch zeta functions [MSC 2020]VANC029226MF30B40Analytic continuation of one complex variable [MSC 2020]VANC032885MF40D05General theorems on summability [MSC 2020]VANC033178MF40G10Abel, Borel and power series methods [MSC 2020]VANC033179MF40GxxSpecial methods of summability [MSC 2020]VANC033180MFBorel SummationKW:KDivergentKW:KEuler SummationKW:KEuler-MacLaurin formulaKW:KRamanujanKW:KSeriesKW:KSummationKW:KCHChamVANL001889CandelpergherBernardVANV085491739987Springer <editore>VANV108073650ITSOL20240614RICAhttp://dx.doi.org/10.1007/978-3-319-63630-6E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN0110721BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08CONS e-book 08LNM2185 20170915 Ramanujan summation of divergent series1466442UNICAMPANIA