02197nam0 2200469 i 450 VAN010757320230801120405.39N978331942351720170206d2016 |0itac50 baengCH|||| |||||Ricci flow and geometric applicationsCetraro, Italy 2010Michel Boileau ... [et al.]Riccardo Benedetti, Carlo Mantegazza editors[Cham] : Springer, 2016XI136 p. ; 24 cm001VAN00508342001 Lecture notes in mathematics. Fondazione CIME. Firenze210 BerlinSpringer300 Dal 2011: C.I.M.E. Foundation Subseries001VAN01022502001 Lecture notes in mathematics210 Berlin [etc.]Springer2166VAN0234109Ricci flow and geometric applications : Cetraro, Italy 2010147443253ExxGeometric evolution equations [MSC 2020]VANC021666MF57M50General geometric structures on low-dimensional manifolds [MSC 2020]VANC023815MF57K30General topology of 3-manifolds [MSC 2020]VANC025093MFGeometrizationKW:KKähler-Ricci flowKW:KManifoldsKW:KPartial differential equationsKW:KPoincare ConjectureKW:KRicci flowKW:KRicci tensorKW:KCHChamVANL001889BenedettiRiccardoVANV041291340MantegazzaCarloVANV082990340BoileauMichelVANV082989Springer <editore>VANV108073650ITSOL20240614RICAhttps://doi.org/10.1007/978-3-319-42351-7E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN0107573BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08CONS e-book 08LNM2166 20170206 Ricci flow and geometric applications1474432UNICAMPANIA