01552nam1 22003131i 450 VAN006897620090422120000.020090422f |0itac50 bafreBE|||| |||||Concordantia in Appianuméditée par Etienne Famerieavec la collaboration du Cetedoc, Université Catholique de Louvain et du Département des sciences de l'antiquité, Université de LiégeHildesheimOlms-Weidmannv.31 cm.001VAN00126962001 Alpha- Omega. Reihe A, Lexica, Indizes, Konkordanzen zur klassischen Philologie210 HildesheimOlms-Weidmann.133001VAN00689792001 ˆ[1]: ‰Index des lemmes. Concordance. Abalas-eis210 HildesheimOlms-Weidmann1993215 XXXII, P. 1-69831 cm.1001VAN00689822001 ˆ[2]: ‰Heis-ou210 HildesheimOlms-Weidmann1993215 P. 699-142431 cm.2001VAN00689832001 ˆ[3]: ‰Hou-ophelimos. Indices210 HildesheimOlms-Weidmann1993215 P. 1425-214931 cm.3HildesheimVANL000342AppianusVANV047535FamerieEtienneVANV054513Olms <editore>VANV108912650Appianus AlexandrinusAppianusVANV047536Appiano di AlessandriaAppianusVANV047537AppianoAppianusVANV047538ITSOL20230616RICAVAN0068976Concordantia in Appianum1406774UNICAMPANIA03311nam 22006375 450 991048312930332120251113211505.03-030-65683-710.1007/978-3-030-65683-6(CKB)4100000011807050(MiAaPQ)EBC6526779(Au-PeEL)EBL6526779(OCoLC)1243350294(PPN)254723756(DE-He213)978-3-030-65683-6(EXLCZ)99410000001180705020210324d2021 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierAn Introduction to Mathematical Relativity /by José Natário1st ed. 2021.Cham :Springer International Publishing :Imprint: Springer,2021.1 online resource (191 pages)Latin American Mathematics Series – UFSCar subseries,2524-67633-030-65682-9 - Preface -- Preliminaries -- Exact Solutions -- Causality -- Singularity Theorems -- Cauchy Problems -- Mass in general relativity -- Black Holes -- Appendix: Mathematical Concepts for Physicists -- Bibliography -- Index.This concise textbook introduces the reader to advanced mathematical aspects of general relativity, covering topics like Penrose diagrams, causality theory, singularity theorems, the Cauchy problem for the Einstein equations, the positive mass theorem, and the laws of black hole thermodynamics. It emerged from lecture notes originally conceived for a one-semester course in Mathematical Relativity which has been taught at the Instituto Superior Técnico (University of Lisbon, Portugal) since 2010 to Masters and Doctorate students in Mathematics and Physics. Mostly self-contained, and mathematically rigorous, this book can be appealing to graduate students in Mathematics or Physics seeking specialization in general relativity, geometry or partial differential equations. Prerequisites include proficiency in differential geometry and the basic principles of relativity. Readers who are familiar with special relativity and have taken a course either in Riemannian geometry (for students of Mathematics) or in general relativity (for those in Physics) can benefit from this book.Latin American Mathematics Series – UFSCar subseries,2524-6763Geometry, DifferentialMathematical physicsGeneral relativity (Physics)Differential equationsDifferential GeometryMathematical Methods in PhysicsGeneral RelativityDifferential EquationsGeometry, Differential.Mathematical physics.General relativity (Physics).Differential equations.Differential Geometry.Mathematical Methods in Physics.General Relativity.Differential Equations.516.36Natário José721266MiAaPQMiAaPQMiAaPQBOOK9910483129303321Introduction to mathematical relativity3590963UNINA