02089nam0 22004813i 450 VAN0029816120251104105958.660N978303480060020250912r19982010 |0itac50 baengCH|||| |||||i e bcrConvex Integration TheorySolutions to the h-principle in geometry and topologyDavid SpringRepr. of 1998 edBasel [etc.]Birkhäuser2010viii, 213 p.24 cm001VAN000810562001 Modern Birkhäuser classics210 Boston [etc.]Birkhäuser1980-2018.53C42Differential geometry of immersions (minimal, prescribed curvature, tight, etc.) [MSC 2020]VANC024057MF58-XXGlobal analysis, analysis on manifolds [MSC 2020]VANC019758MF58A20Jets in global analysis [MSC 2020]VANC030755MF58C35Integration on manifolds; measures on manifolds [MSC 2020]VANC022484MF58E25Applications of variational problems to control theory [MSC 2020]VANC037124MFDifferential geometryKW:KDifferential topologyKW:KEquationsKW:KFunctionsKW:KGeometryKW:KManifoldsKW:KTopologyKW:KCHBaselVANL002076SpringDavidVANV14360761876Birkhäuser <editore>VANV108193650ITSOL20251107RICAhttps://doi.org/10.1007/978-3-0348-0060-0E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN00298161BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08DLOAD e-Book 12650 08eMF12650 20251021 Convex integration theory374783UNICAMPANIA