01878nam0 22004573i 450 VAN0029796820251016122017.877N978303488940720250909d1998 |0itac50 baengCH|||| |||||i e bcrConvex Integration TheorySolutions to the h-principle in geometry and topologyDavid SpringBasel [etc.]SpringerBirkhäuser1998viii, 212 p.24 cm001VAN000364872001 Monographs in mathematics210 Boston [etc.]Birkhäuser ; [poi] Springer9235AxxGeneral topics in partial differential equations [MSC 2020]VANC022828MF57-XXManifolds and cell complexes [MSC 2020]VANC019671MF57RxxDifferential topology [MSC 2020]VANC023570MFDifferential geometryKW:KDifferential topologyKW:KEquationsKW:KFunctionsKW:KGeometryKW:KManifoldsKW:KTopologyKW:KCHBaselVANL002076SpringDavidVANV14360761876Birkhäuser <editore>VANV108193650Springer <editore>VANV108073650ITSOL20251017RICAhttps://doi.org/10.1007/978-3-0348-8940-7E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN00297968BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08DLOAD e-Book 12594 08eMF12594 20251016 Convex integration theory374783UNICAMPANIA