00989cam0-2200301 --450 991100279540332120250528095343.0978-88-279-1443-4IT2024-42020250528d2023----kmuy0itay5050 baitaITy 001yy<<Il >>contratto a tempo determinatola nuova disciplina alla luce del D.L. 48/23Luca LorenzoMilanoKey2023137 p.23 cm<<La >>biblioteca del giurista5In copertina: Aggiornato alla sent. cass. n. 23445/2023 (Durata della somministrazione)Contratti a tempo determinatoLegislazioneItalia344.450154223itaLorenzo,Luca763131ITUNINAREICATUNIMARCBK9911002795403321COLLEZ. 3468 (5)1518/2025FSPBCFSPBCContratto a tempo determinato4382638UNINA01622nam0 22003733i 450 VAN0028546720251211024426.211N978331955177720250127d2017 |0itac50 baengCH|||| |||||i e bcrGenetic Data Analysis for Plant and Animal BreedingFikret Isik, James Holland, Christian MalteccaChamSpringer2017XVII, 400 p.ill.24 cmCHChamVANL001889581.3Genetica, evoluzione, caratteristiche di età delle piante22630Agricoltura e tecnologie connesse22591.35Genetica animale22IsikFikretVANV239378937025HollandJamesVANV239380506342MalteccaChristianVANV2393811783201Springer <editore>VANV108073650ITSOL20251212RICAhttps://link.springer.com/openurl?genre=book&isbn=978-3-319-55177-7E-book - Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI SCIENZE E TECNOLOGIE AMBIENTALI BIOLOGICHE E FARMACEUTICHEIT-CE0101VAN17NVAN00285467BIBLIOTECA DEL DIPARTIMENTO DI SCIENZE E TECNOLOGIE AMBIENTALI BIOLOGICHE E FARMACEUTICHE17CONS e-book 178 17BIB178/238 238 20250127 Genetic Data Analysis for Plant and Animal Breeding4310482UNICAMPANIA12024nam 22004933 450 991101920370332120250905080656.03-527-84375-23-527-84374-43-527-84376-0(CKB)39711080500041(MiAaPQ)EBC32252590(Au-PeEL)EBL32252590(OCoLC)1528984325(BIP)120678802(BIP)86563909(EXLCZ)993971108050004120250905d2025 uy 0gerur|||||||||||txtrdacontentcrdamediacrrdacarrierLaboratory of the Future Building the Digital Transformation1st ed.Newark :John Wiley & Sons, Incorporated,2025.©2025.1 online resource (291 pages)3-527-35265-1 Cover -- Half Title Page -- Title Page -- Copyright -- Contents -- List of Contributors -- Foreword - December 2024 -- Chapter 1: The Lab of the Future -- 1.1 Presentation of the FutureLab.NRW Concept -- 1.1.1 The Inspiration -- 1.1.2 The Starting Point -- 1.1.2.1 Instrumental Analysis for Small Molecule Quantification -- 1.1.2.2 Effect-based Analysis for Identifying Relevant Compounds of Interest -- 1.1.3 The Transformation of the Lab: New Concepts for the FutureLab. NRW -- 1.1.3.1 Instrumental Analysis for Large Molecule Quantification -- 1.1.3.2 Direct Coupling of Instrumental and Effect-based Analysis -- 1.1.3.3 Miniaturization -- 1.1.3.4 Digitalization -- 1.2 Presentation of the FutureLab.NRW Software Platform -- 1.2.1 Introductory Remarks -- 1.2.2 Overall Specifications -- 1.2.3 Inclusion of the FAIR Data Principles -- 1.3 The Center for Life Science Automation (CELISCA) - An Interview with Prof. Dr. Kerstin Thurow from the University of Rostock -- 1.3.1 Personal Introduction -- 1.3.2 CELISCA's Approach to Automation -- 1.3.3 Mobile Robots in the Lab -- 1.3.4 The Limits of Automation -- 1.3.5 The Future of Training -- Chapter 2: Electronic Laboratory Notebooks -- 2.1 Introductory Remarks - FAIR Data and the Reproduction Crisis -- 2.2 ELN Without LIMS -- 2.2.1 A Brief and Not Comprehensive Definition of the Nature of an ELN -- 2.2.2 Some Important Functionalities of an ELN -- 2.2.2.1 Introductory Remarks -- 2.2.2.2 Metadata -- 2.2.2.3 Accessibility -- 2.2.2.4 Standardization -- 2.2.2.5 Data Protection -- 2.2.2.6 Versioning -- 2.2.2.7 Data Quality -- 2.2.2.8 Collaboration -- 2.2.2.9 Long-term Archiving -- 2.2.2.10 Data Security -- 2.2.2.11 Conclusion -- 2.3 Use-case: Digital Instrument Logs -- 2.3.1 Introductory Remarks -- 2.3.2 Implementation.2.4 Chemotion: Developing an Open-source Platform for Data Acquisition and Storage - An Interview with Dr. Patrick Hodapp from the Karlsruhe Institute of Technology -- 2.4.1 Personal Introduction -- 2.4.2 Motivation for Developing Chemotion -- 2.4.3 Meeting the Specific Needs of an Organic Chemistry Laboratory -- 2.4.4 Overcoming Barriers of Adoption -- 2.4.5 Improving the Quality and the Output of Publications -- 2.4.6 Long-term Maintenance of the Platform -- 2.4.7 Arguments Against Using an ELN -- 2.5 ELNs Are Dead! Long Live ELNs! - An Interview with Dr. Samantha Pearman-Kanza from the University of Southampton -- 2.5.1 Personal Introduction -- 2.5.2 Replacing Paper Notebooks -- 2.5.3 Choosing an Appropriate ELN -- 2.5.4 Data Privacy -- 2.5.5 Continuity of Platform -- 2.5.6 Further Research on ELNs - Overcoming Current Technical Limitations -- 2.5.7 Using Advanced AI Tools to Retrieve Valuable Information from the Data Lake -- Chapter 3: Digital Transformation, But How -- 3.1 Introduction -- 3.2 Existing Problems Calling for a Digital Solution -- 3.2.1 Introductory Remarks -- 3.2.2 Stringent Standards -- 3.2.3 Manual Documentation -- 3.2.4 Data Integrity -- 3.2.5 Reproducibility -- 3.3 Challenges on the Road to a Digital Transformed Lab -- 3.3.1 Missing Guidance -- 3.3.2 Moon-shot Thinking -- 3.3.3 Legacy Devices -- 3.3.4 Heterogeneous Device Landscape -- 3.4 Digitization Versus Digital Transformation -- 3.5 Existing Approaches for Digitized Laboratory Environment -- 3.6 Methodical Approach -- 3.6.1 Introduction -- 3.6.2 Stakeholder Acquisition -- 3.6.3 Defining the Objective -- 3.6.3.1 Introduction -- 3.6.3.2 Tier One: Explorative Laboratory -- 3.6.3.3 Tier Two: Remote Controlled Laboratory -- 3.6.3.4 Tier Three: Semi-automatic Laboratory -- 3.6.3.5 Tier Four: Automatic Laboratory -- 3.6.3.6 Tier Five: AI Laboratory -- 3.6.3.7 Conclusion.3.6.4 Workflow Analysis -- 3.6.5 Workflow Abstraction -- 3.6.5.1 Introduction -- 3.6.5.2 Digitization of Measured Values -- 3.6.5.3 Automation -- 3.6.5.4 Process Control Commands -- 3.6.5.5 Process Control Variables -- 3.6.6 Gateway and Cybersecurity -- 3.6.7 Gateway Connector -- 3.6.8 Choosing the Middleware -- 3.6.8.1 Introduction -- 3.6.8.2 Commercial IoT Platform -- 3.6.8.3 Software Ecosystem -- 3.6.9 Choosing Network Protocols -- 3.6.10 Driver Development -- 3.6.11 IoT Server -- 3.6.12 Integrating Inter-Process Software -- 3.6.13 Workflow Implementation -- 3.6.14 Functional Integration -- 3.6.14.1 Introduction -- 3.6.14.2 Hardware Layer -- 3.6.14.3 Software Layer -- 3.7 Final Conclusion -- 3.8 Lessons Learned: An Interview with Dr. Jochen Tuerk, Head of the Cooperation Laboratory of Ruhrverband and Emschergenossenschaft / Lippeverband -- 3.8.1 Personal Introduction -- 3.8.2 Moon-shot Thinking -- 3.8.3 The Role of Digital Natives -- 3.8.4 Requirements of Guidelines -- 3.8.5 LIMS, ELN, or LES, That Is the Question -- 3.9 The Digital Transformation in the Chemical Industry - An interview with Dr. Joachim Richert from Technical University of Darmstadt -- 3.9.1 Personal Introduction -- 3.9.2 The Digital Transformation in Industry -- 3.9.3 Commitment of Users and Vendors to Achieve the Digital Transformation -- 3.9.4 Core Stakeholders -- 3.9.5 Shortcomings of Academic Research in Student Education -- Chapter 4: Communication Standards -- 4.1 Introduction to Device Communication -- 4.2 What Is a Communication Layer? -- 4.3 SiLA 2 and LADS OPC UA -- 4.3.1 Origins and Development -- 4.3.2 Communication Paradigms -- 4.4 SiLA - An Interview with Daniel Juchli from Wega Informatik AG -- 4.4.1 Personal Introduction -- 4.4.2 Plug-and-Play Connectivity -- 4.4.3 The Status Quo of SiLA.4.4.4 There are Many Standards - So Let's Try to Harmonize, Using a New Standard -- 4.4.5 The Chicken and Egg Problem -- 4.4.6 The Role of Open Source in Lab Automation Standards -- 4.4.7 The Future of Lab Standardization: Trends and Challenges -- 4.5 LADS - An Interview with Dr. Matthias Arnold -- 4.5.1 Personal Introduction -- 4.5.2 Why Another Standard? -- 4.5.2.1 "Plug-and-Play Connectivity" - Revisited -- 4.5.2.2 OPC UA Companion Specifications and "Machine Plug and Play -- 4.5.2.3 "Human Versus Machine Plug and Play" - LADS OPC UA Example -- 4.5.2.4 The Role of Ontologies and Taxonomies - FAIR Data and AI Enablement -- 4.5.3 The Future Perspective of LADS -- 4.5.4 Tackling Cybersecurity Challenges -- 4.5.5 Coexistence of the Two Standards -- 4.6 Digitalization at Roche - An Interview with Tom Kissling from F. Hoffmann - La Roche Ltd -- 4.6.1 Personal Introduction -- 4.6.2 The Role of Standardization -- 4.6.3 Money Can Buy Everything, Can't It? -- 4.6.4 The Concept of Digital Transformation at Roche -- 4.6.5 Academic Versus Industrial Research -- 4.7 Summary from the Perspective of a Device Integrator - A Brief Comment from Julian Luebke, Chief Business Officer at Labforward GmbH -- Chapter 5: Data and Data Processing Standards -- 5.1 Introduction -- 5.2 Data Standards -- 5.2.1 Introduction -- 5.2.2 The Basics of Data Standards -- 5.2.3 Use Cases for Open Data Standards -- 5.2.3.1 Introduction -- 5.2.3.2 Basic Parameters -- 5.2.3.3 Multidimensional Analytical Data -- 5.2.4 Software to Read, Write, and Process Open Data Standards -- 5.3 Data Processing -- 5.3.1 Introductory Remarks -- 5.3.2 Data Competences -- 5.3.3 Vendor Versus Open-source Processing Software -- 5.3.4 Reproducible Workflows with StreamFind -- 5.3.5 Automated Use of Results in Broader Smart Laboratory Workflows.5.4 An Overview About Important Data Standards: AnIML, ASM, and ADF - An Interview with Dr. Philip Wenig from Lablicate GmbH -- 5.4.1 Personal Introduction -- 5.4.2 Open-Source Versus Proprietary Software -- 5.4.3 A Brief and General Overview about AnIML, ASM, and ADF -- 5.4.4 The Future Perspective of Data Standards -- 5.5 Data Processing with a Focus on Advanced Data Analysis and Quality Assurance - An Interview with Dr. Gerrit Renner from University of Duisburg-Essen -- 5.5.1 Personal Introduction -- 5.5.2 Challenges of Data Processing with Vendor Software -- 5.5.3 Quality Assurance in Vendor and Open-source Software -- 5.5.4 Transparency in Data Processing -- 5.5.5 Opportunities from Advances in Data Science -- Chapter 6: Smart Digital Workflows -- 6.1 General Introduction -- 6.2 Temperature Monitoring -- 6.2.1 Introduction -- 6.2.2 First Approach: Off-the-shelf Software -- 6.2.3 Second Approach: DIY Low Cost -- 6.2.4 Notifications and Alarms -- 6.2.5 Conclusion -- 6.3 Labeling Workflow -- 6.3.1 Introduction -- 6.3.2 Implementation -- 6.3.3 Conclusion -- 6.4 Stock Solution Workflow -- 6.4.1 Introduction -- 6.4.2 Implementation -- 6.4.2.1 Digital SOP -- 6.4.2.2 Device Integration and Communication -- 6.4.2.3 Process Comparison and Efficiency Gains -- 6.4.3 Conclusion -- 6.5 Automation and Orchestration of Atline Analysis -- 6.5.1 Introduction -- 6.5.2 Implementation -- 6.5.2.1 Orchestration -- 6.5.2.2 Dataflow -- 6.5.2.3 Device Integration -- 6.5.3 Conclusion -- 6.6 Inventing the Smartlab - An Interview with Prof. Dr. Sascha Beutel from the Institute of Technical Chemistry at the Leibniz University of Hannover -- 6.6.1 Personal Introduction -- 6.6.2 A Look Back at the Beginning of the Digital Transformation -- 6.6.3 Promoting Interdisciplinary Education of Students -- 6.6.4 The Transformative Power of Machine Learning and Artificial Intelligence.6.6.5 The Future of Academic Research.An essential resource for the practical implementation of new technologies in the laboratory value chain In Laboratory of the Future: Building the Digital Transformation , distinguished chemist Dr. Thorsten Teutenberg delivers an up-to-date discussion of digitization and automation, smart workflows, flexible laboratory automation, miniaturization and sustainability in the contemporary laboratory environment. With a strong focus on the practical implementation of the latest technologies and workflows, the book's intention is to advocate for the digital transformation. Each chapter concludes with various insights from renowned experts in the field, encouraging readers to think critically and deepen their understanding of the presented concepts. These perspectives offer alternative interpretations, highlight the complexity of real-world implementation, and stimulate informed debate. Engaging with diverse perspectives helps readers assess the strengths and limitations of various approaches, fostering a balanced and comprehensive grasp of laboratory digitalization. Laboratory of the Future: Building the Digital Transformation is a valuable resource for laboratory managers, scientists, digital transformation leaders, and decision-makers involved in research and development environments seeking to optimize workflows, enhance data integrity, and implement automation technologies. It offers insights into the future of lab technologies by presenting the challenges and strategies for digitizing laboratory operations and incorporating expert perspectives and practical case studies.Teutenberg Thorsten1846648MiAaPQMiAaPQMiAaPQBOOK9911019203703321Laboratory of the Future4431391UNINA