01040nam0 22002653i 450 VAN0027887420240806101552.256978-18-566-9753-820240701d2012 |0itac50 baengGB|||| |||||Structural packagingdesign your own boxes and 3-D formsPaul JacksonLondonLaurence King,128 p.ill. ; 22x22 cm128 p.ill.22x22 cmCarta tagliata e piegataVANC037862ARGBLondonVANL000015JacksonPaulVANV005453291525Laurence KingVANV216515650ITSOL20240906RICABIBLIOTECA DEL DIPARTIMENTO DI ARCHITETTURA E DISEGNO INDUSTRIALEIT-CE0107VAN01VAN00278874BIBLIOTECA DEL DIPARTIMENTO DI ARCHITETTURA E DISEGNO INDUSTRIALE01PREST T-ESAME380 01BDA2328 20240701 Structural packaging4208862UNICAMPANIA03605nam 22005415 450 991087466450332120240721125229.09783031565007(electronic bk.)978303156499410.1007/978-3-031-56500-7(MiAaPQ)EBC31539088(Au-PeEL)EBL31539088(CKB)33109639800041(MiAaPQ)EBC31539866(Au-PeEL)EBL31539866(DE-He213)978-3-031-56500-7(EXLCZ)993310963980004120240721d2024 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierFundamentals of Fourier Analysis /by Loukas Grafakos1st ed. 2024.Cham :Springer International Publishing :Imprint: Springer,2024.1 online resource (416 pages)Graduate Texts in Mathematics,2197-5612 ;302Print version: Grafakos, Loukas Fundamentals of Fourier Analysis Cham : Springer International Publishing AG,c2024 9783031564994 1 Introductory Material -- 2 Fourier Transforms, Tempered Distributions, Approximate Identities -- 3 Singular Integrals -- 4 Vector-Valued Singular Integrals and Littlewood–Paley Theory -- 5 Fractional Integrability or Differentiability and Multiplier Theorems -- 6 Bounded Mean Oscillation -- 7 Hardy Spaces -- 8 Weighted Inequalities -- Historical Notes -- Appendix A Orthogonal Matrices -- Appendix B Subharmonic Functions -- Appendix C Poisson Kernel on the Unit Strip -- Appendix D Density for Subadditive Operators -- Appendix E Transposes and Adjoints of Linear Operators -- Appendix F Faa di Bruno Formula -- Appendix G Besicovitch Covering Lemma -- Glossary -- References -- Index.This self-contained text introduces Euclidean Fourier Analysis to graduate students who have completed courses in Real Analysis and Complex Variables. It provides sufficient content for a two course sequence in Fourier Analysis or Harmonic Analysis at the graduate level. In true pedagogical spirit, each chapter presents a valuable selection of exercises with targeted hints that will assist the reader in the development of research skills. Proofs are presented with care and attention to detail. Examples are provided to enrich understanding and improve overall comprehension of the material. Carefully drawn illustrations build intuition in the proofs. Appendices contain background material for those that need to review key concepts. Compared with the author’s other GTM volumes (Classical Fourier Analysis and Modern Fourier Analysis), this text offers a more classroom-friendly approach as it contains shorter sections, more refined proofs, and a wider range of exercises. Topics include the Fourier Transform, Multipliers, Singular Integrals, Littlewood–Paley Theory, BMO, Hardy Spaces, and Weighted Estimates, and can be easily covered within two semesters.Graduate Texts in Mathematics,2197-5612 ;302Fourier analysisHarmonic analysisFourier AnalysisAbstract Harmonic AnalysisFourier analysis.Harmonic analysis.Fourier Analysis.Abstract Harmonic Analysis.515.2433Grafakos Loukas298204MiAaPQMiAaPQMiAaPQ9910874664503321Fundamentals of Fourier Analysis4183629UNINA