02288nam0 22005053i 450 VAN0027696220240806101546.761N978303089660720240606d2022 |0itac50 baengCH|||| |||||Classical Lie Algebras at InfinityIvan Penkov, Crystal HoytChamSpringer2022xiii, 239 p.ill.24 cm001VAN000304862001 Springer monographs in mathematics210 Berlin [etc.]Springer1989-17B05Structure theory for Lie algebras and superalgebras [MSC 2020]VANC024068MF17B10Representations of Lie algebras and Lie superalgebras, algebraic theory (weights) [MSC 2020]VANC024337MF17B45Lie algebras of linear algebraic groups [MSC 2020]VANC024078MF17B55Homological methods in Lie (super)algebras [MSC 2020]VANC034024MF18M70Algebraic operads, cooperads, and Koszul duality [MSC 2020]VANC037879MFBorel subalgebrasKW:KBott-Borel-Weil theoremKW:KFirst reconstruction theoremKW:KHarish-Chandra ModulesKW:KKostant theoremKW:KLie AlgebrasKW:KLie SuperalgebrasKW:KParabolic subalgebrasKW:KRoot-reductive Lie algebrasKW:KScheunert theoremKW:KTensor modulesKW:KWeight modulesKW:KCHChamVANL001889PenkovIvanVANV0810401738636HoytCrystalVANV2296231738637Springer <editore>VANV108073650ITSOL20250328RICAhttps://doi.org/10.1007/978-3-030-89660-7E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN00276962BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08DLOAD e-Book 8690 08eMF8690 20240610 Classical Lie Algebras at Infinity4161111UNICAMPANIA