00986nam--2200325---450-99000352696020331620110509094231.0978-88-62944-216-4000352696USA01000352696(ALEPH)000352696USA0100035269620110509d2011----km-y0itay50------baitaIT||||||||001yy<<Il>> linguaggio del teatro italiano contemporaneoesegesi ermeneuticaGiuseppe BenelliFirenzeBarbès2011155 p.23 cmTeatroLinguaggioItaliaSec. 19.-20.BNCF792.01422BENELLI,Giuseppe315677ITsalbcISBD990003526960203316XIII.1.B. 927231432 L.M.XIII.1.B.00296436BKUMACHIARA9020110509USA010942Linguaggio del teatro italiano contemporaneo1113279UNISA02571nam0 22006013i 450 VAN0026078920251016094545.323N978303115127920230705d2022 |0itac50 baengCH|||| |||||i e bcrConvex ConesGeometry and ProbabilityRolf SchneiderChamSpringer2022x, 347 p.ill.24 cm001VAN001022502001 Lecture notes in mathematics210 Berlin [etc.]Springer231951-XXGeometry [MSC 2020]VANC019810MF52-XXConvex and discrete geometry [MSC 2020]VANC019811MF52A22Random convex sets and integral geometry (aspects of convex geometry) [MSC 2020]VANC022480MF52C35Arrangements of points, flats, hyperplanes (aspects of discrete geometry) [MSC 2020]VANC028900MF60-XXProbability theory and stochastic processes [MSC 2020]VANC020428MF60DxxGeometric probability and stochastic geometry [MSC 2020]VANC020491MFCentral hyperplane tessellationKW:KCoconvex setKW:KConic intrinsic volumeKW:KConic kinematic formulaKW:KConic support measuresKW:KConvex conesKW:KCover-Efron coneKW:KGrassmann angleKW:KHigh dimensionsKW:KMaster Steiner formulaKW:KPolarityKW:KPolyhedral Gauss-BonnetKW:KPolyhedral tube formulaKW:KPolyhedronKW:KRandom coneKW:KSchläfli coneKW:KValuationKW:KCHChamVANL001889SchneiderRolfVANV04038534894Springer <editore>VANV108073650ITSOL20251017RICAhttps://doi.org/10.1007/978-3-031-15127-9E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethNVAN00260789BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08CONS e-book 08LNM2319 20230705 BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08DLOAD e-Book 8702 08eMF8702 20240610 Convex Cones3390114UNICAMPANIA