03076nam0 22006853i 450 VAN0026077920251016094501.594N978303114869920230705d2022 |0itac50 baengCH|||| |||||i e bcrˆThe ‰Characterization of Finite ElasticitiesFactorization Theory in Krull Monoids via Convex GeometryDavid J. GrynkiewiczChamSpringer2022xii, 282 p.ill.24 cm001VAN001022502001 Lecture notes in mathematics210 Berlin [etc.]Springer231605-XXCombinatorics [MSC 2020]VANC019812MF11B30Arithmetic combinatorics; higher degree uniformity [MSC 2020]VANC033810MF11B75Other combinatorial number theory [MSC 2020]VANC022174MF13-XXCommutative algebra [MSC 2020]VANC019732MF13A05Divisibility and factorizations in commutative rings [MSC 2020]VANC022193MF20-XXGroup theory and generalizations [MSC 2020]VANC019715MF20M12Ideal theory for semigroups [MSC 2020]VANC037504MF20M14Commutative semigroups [MSC 2020]VANC029151MF52-XXConvex and discrete geometry [MSC 2020]VANC019811MF52A20Convex sets in $n$ dimensions (including convex hypersurfaces) [MSC 2020]VANC023130MFCarathéordory’s TheoremKW:KCatenary degreeKW:KConvex ConeKW:KDelta SetKW:KElasticityKW:KFactorizationKW:KInfinite Subsets of Lattice PointsKW:KKrull MonoidKW:KKrull domainKW:KLatticeKW:KMinimal Positive BasisKW:KPositive BasisKW:KPrimitive Partition IdentitiesKW:KSets of lengthsKW:KSimplicial FanKW:KStructure Theorem for UnionsKW:KTransfer Krull DomainKW:KWell-quasi-orderingKW:KZero-sumKW:KZero-sum SequenceKW:KCHChamVANL001889GrynkiewiczDavid J.VANV2149371064686Springer <editore>VANV108073650ITSOL20251017RICAhttps://doi.org/10.1007/978-3-031-14869-9E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethNVAN00260779BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08CONS e-book 08LNM2316 20230705 BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08DLOAD e-Book 8912 08eMF8912 20240701 Characterization of Finite Elasticities3390111UNICAMPANIA