01995nam0 22004453i 450 VAN0024939620240806101419.61N978303054430020220830d2020 |0itac50 baengCH|||| |||||Lie Models in TopologyUrtzi Buijs ... [et al.]ChamBirkhäuserSpringer2020ix, 299 p.ill.24 cm001VAN000293292001 Progress in mathematics210 Boston [etc.]Birkhäuser335VAN00249397Lie Models in Topology290546117B55Homological methods in Lie (super)algebras [MSC 2020]VANC034024MF17B70Graded Lie (super)algebras [MSC 2020]VANC033797MF18N40Homotopical algebra, Quillen model categories, derivators [MSC 2020]VANC026589MF18N50Simplicial sets, simplicial objects [MSC 2020]VANC024569MF55P62Rational homotopy theory [MSC 2020]VANC024110MFComplete Lie algebrasKW:KDeligne groupoidKW:KLawrence-Sullivan intervalKW:KLie modelsKW:KMaurer-Cartan elementsKW:KRational homotopy theoryKW:KCHChamVANL001889BuijsUrtziVANV203998Birkhäuser <editore>VANV108193650Springer <editore>VANV108073650ITSOL20241115RICAhttp://doi.org/10.1007/978-3-030-54430-0E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN00249396BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08DLOAD e-book 4718 08eMF4718 20220830 Lie Models in Topology2905461UNICAMPANIA