02853nam0 22005893i 450 VAN0019141920240806101131.835N978331949499920210723d2017 |0itac50 baengCH|||| |||||Reflected Brownian Motions in the KPZ Universality ClassThomas Weiss, Patrik Ferrari, Herbert SpohnChamSpringer2017vii, 118 p.24 cm001VAN001042742001 SpringerBriefs in Mathematical Physics210 Berlin [etc.]Springer2014-18VAN00191422Reflected Brownian Motions in the KPZ Universality Class183319260H15Stochastic partial differential equations (aspects of stochastic analysis) [MSC 2020]VANC021488MF60K35Interacting random processes; statistical mechanics type models; percolation theory [MSC 2020]VANC019993MF82-XXStatistical mechanics, structure of matter [MSC 2020]VANC021931MF82C22Interacting particle systems in time-dependent statistical mechanics [MSC 2020]VANC025064MF82C23Exactly solvable dynamic models in time-dependent statistical mechanics [MSC 2020]VANC036430MFAiry processesKW:KBethe AnsatzKW:KContour integrationKW:KDeterminantal point processKW:KDeterminantal structureKW:KEynard-Metha TheoremKW:KFredholm determinantsKW:KKardar-Parisi-Zhang equationKW:KLast passage percolationKW:KPoisson initial conditionsKW:KPolynuclear growth modelKW:KQuantum integrabilityKW:KSkorokhod constructionKW:KSteepest descentKW:KStochastic Partial Differential EquationsKW:KTASEP modelKW:KTotally asymmetric simple exclusion processKW:KCHChamVANL001889WeissThomasVANV169832823916FerrariPatrikVANV169833823917SpohnHerbertVANV16983461175Springer <editore>VANV108073650ITSOL20241115RICAhttp://doi.org/10.1007/978-3-319-49499-9E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN00191419BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08DLOAD e-book 3259 08eMF3259 20210723 Reflected Brownian Motions in the KPZ Universality Class1833192UNICAMPANIA