02203nam0 2200529 i 450 VAN0012478320240806100817.328N978331991755920191025d2018 |0itac50 baengCH|||| |||||Introduction to Riemannian ManifoldsJohn M. Lee2. edChamSpringer2018xiii, 437 p.ill.24 cm001VAN000235792001 Graduate texts in mathematics210 New York [etc.]Springer1950-176VAN00236319Riemannian Manifolds: An Introduction to Curvature255422553-XXDifferential geometry [MSC 2020]VANC019813MF53B20Local Riemannian geometry [MSC 2020]VANC024066MF53C20Global Riemannian geometry, including pinching [MSC 2020]VANC023825MFComparison theoryKW:KCurvatureKW:KCurvature and topologyKW:KDifferential geometry textbookKW:KGauss-Bonnet TheoremKW:KGeodesicsKW:KGraduate mathematics textbookKW:KJacobi fieldsKW:KLevi-Cevita connectionKW:KManifoldsKW:KRiemannian geometryKW:KRiemannian geometry course textbookKW:KRiemannian metricsKW:KRiemannian submanifoldsKW:KTensorKW:KCHChamVANL001889LeeJohn M.VANV04237161929Springer <editore>VANV108073650ITSOL20241115RICAhttp://doi.org/10.1007/978-3-319-91755-9E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN00124783BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08DLOAD e-book 1202 08eMF1202 20191025 Riemannian Manifolds: An Introduction to Curvature2554225UNICAMPANIA