01809nam0 2200445 i 450 VAN0012450320240806100816.547N978303003241820191018d2018 |0itac50 baengCH|||| |||||ˆA ‰Concise Introduction to Measure TheorySatish ShiraliChamSpringer2018x, 271 p.24 cmVAN00236073ˆA ‰Concise Introduction to Measure Theory156318528-XXMeasure and integration [MSC 2020]VANC019878MF28AxxClassical measure theory [MSC 2020]VANC022188MFAbsolute continuityKW:KCantor setKW:KFubini and Tonelli theoremsKW:KFundamental theorem of CalculusKW:KFuzzy measureKW:KLebesgue differentiability theoremKW:KLebesgue measureKW:KMeasure and integrationKW:KOuter measureKW:KProduct measureKW:KVitali covering theoremKW:KCHChamVANL001889ShiraliSatishVANV094765767697Springer <editore>VANV108073650ITSOL20241115RICAhttp://doi.org/10.1007/978-3-030-03241-8E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN00124503BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08DLOAD e-book 0977 08eMF977 20191018 Concise Introduction to Measure Theory1563185UNICAMPANIA