02175nam0 2200433 i 450 VAN0012355720240806100813.859N978331955976620190924d2017 |0itac50 baengCH|||| |||||Newton’s Method: an Updated Approach of Kantorovich’s TheoryJosé Antonio Ezquerro Fernández, Miguel Ángel Hernández VerónChamBirkhauser2017xii, 166 p.24 cm001VAN000513642001 Frontiers in mathematics210 Basel [etc.]Birkhäuser2004-VAN00235849Newton’s Method: an Updated Approach of Kantorovich’s Theory254791734B15Nonlinear boundary value problems for ordinary differential equations [MSC 2020]VANC029108MF45G10Other nonlinear integral equations [MSC 2020]VANC022215MF65H10Numerical computation of solutions to systems of equations [MSC 2020]VANC022161MF65J15Numerical solutions to equations with nonlinear operators [MSC 2020]VANC022224MFError estimatesKW:KKantorovich’s TheoryKW:KMajorizing SequenceKW:KNewton’s MethodKW:KOrder of ConvergenceKW:KSemilocal ConvergenceKW:KCHChamVANL001889Ezquerro FernánezJosé AntonioVANV095014767176Hernández-VerónMiguel ÁngelVANV095015767177Birkhäuser <editore>VANV108193650ITSOL20241115RICAhttp://doi.org/10.1007/978-3-319-55976-6E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN00123557BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08DLOAD e-book 0814 08eMF814 20190924 Newton’s Method: an Updated Approach of Kantorovich’s Theory2547917UNICAMPANIA