02148nam 2200541 450 99646667240331620220907192953.03-540-49266-610.1007/BFb0076894(CKB)1000000000437199(DE-He213)978-3-540-49266-5(MiAaPQ)EBC5576505(Au-PeEL)EBL5576505(OCoLC)1066188278(MiAaPQ)EBC6842114(Au-PeEL)EBL6842114(PPN)155168835(EXLCZ)99100000000043719920220907d1995 uy 0engurnn#008mamaatxtrdacontentcrdamediacrrdacarrierPolynomial mappings /Władysław Narkiewicz1st ed. 1995.Berlin :Springer,[1995]©19951 online resource (VIII, 140 p.)Lecture notes in mathematics (Springer-Verlag) ;16000-387-59435-3 3-540-59435-3 The book deals with certain algebraic and arithmetical questions concerning polynomial mappings in one or several variables. Algebraic properties of the ring Int(R) of polynomials mapping a given ring R into itself are presented in the first part, starting with classical results of Polya, Ostrowski and Skolem. The second part deals with fully invariant sets of polynomial mappings F in one or several variables, i.e. sets X satisfying F(X)=X . This includes in particular a study of cyclic points of such mappings in the case of rings of algebrai integers. The text contains several exercises and a list of open problems.Lecture notes in mathematics (Springer-Verlag) ;1600.Mappings (Mathematics)PolynomialsMappings (Mathematics)Polynomials.511.3311C08mscNarkiewicz Władysław478881MiAaPQMiAaPQMiAaPQBOOK996466672403316Polynomial mappings2910185UNISA02435nam0 2200529 i 450 VAN0012337220240806100813.422N978331949638220190918d2017 |0itac50 baengCH|||| |||||Geometry, analysis and probabilityin honor of Jean-Michel BismutJean-Benoît Bost ... [et al.] editorsChamBirkhauser2017vi, 361 p.ill.24 cm001VAN000293292001 Progress in mathematics210 Boston [etc.]Birkhäuser310VAN00235632Geometry, analysis and probability156044611-XXNumber theory [MSC 2020]VANC019688MF14-XXAlgebraic geometry [MSC 2020]VANC019702MF32-XXSeveral complex variables and analytic spaces [MSC 2020]VANC024999MF53-XXDifferential geometry [MSC 2020]VANC019813MF58-XXGlobal analysis, analysis on manifolds [MSC 2020]VANC019758MF60-XXProbability theory and stochastic processes [MSC 2020]VANC020428MFAnalytic torsionKW:KArithmetic hyperbolic manifoldsKW:KDeterminant line bundleKW:KGroupoids and higher categoriesKW:KK-stabilityKW:KKähler-Einstein metricsKW:KLog-correlated Gaussian fieldKW:KModuli spaces of stable bundlesKW:KMoment mapKW:KPolylogarithm on abelian schemesKW:KRenormalization flow for the FK-percolation modelsKW:KTeichmüller theoryKW:KWeierstrass divisorsKW:KCHChamVANL001889BostJean-BenoîtVANV094772Birkhäuser <editore>VANV108193650ITSOL20241115RICAhttp://doi.org/10.1007/978-3-319-49638-2E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN00123372BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08DLOAD e-book 0694 08eMF694 20190918 Geometry, analysis and probability1560446UNICAMPANIA