02315nam0 2200481 i 450 VAN0011368720240806100749.541N978331921200520180117d2015 |0itac50 baengCH|||| |||||ˆThe ‰equationally-defined commutatora study in equational logic and algebraJanusz Czelakowski[Cham]BirkhäuserSpringer2015IX, 292 p.ill.24 cmVAN00235290ˆThe ‰equationally-defined commutator152272703C05Equational classes, universal algebra in model theory [MSC 2020]VANC022423MF03G27Abstract algebraic logic [MSC 2020]VANC033744MF06C05Modular lattices, Desarguesian lattices [MSC 2020]VANC033745MF08-XXGeneral algebraic systems [MSC 2020]VANC022421MF08A30Subalgebras, congruence relations [MSC 2020]VANC025215MF08A35Automorphisms, endomorphisms of algebraic structures [MSC 2020]VANC033746MF08B05Equational logic, Mal'tsev conditions [MSC 2020]VANC033747MF08B10Congruence modularity, congruence distributivity [MSC 2020]VANC022276MF08C15Quasivarieties [MSC 2020]VANC033748MFAbstract algebraic logicKW:KCommutatorKW:KCommutator theoryKW:KEquational logicKW:KQuasivarietiesKW:KUniversal algebraKW:KCHChamVANL001889CzelakowskiJanuszVANV087784755628Birkhäuser <editore>VANV108193650Springer <editore>VANV108073650ITSOL20241115RICAhttp://dx.doi.org/10.1007/978-3-319-21200-5E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN00113687BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08DLOAD e-book 0469 08eMF469 20180117 Equationally-defined commutator1522727UNICAMPANIA