01269nam 2200445 450 991080988240332120230629225044.01-119-37391-31-119-37387-5(CKB)4940000000610099(MiAaPQ)EBC6715197(Au-PeEL)EBL6715197(OCoLC)1291213962(EXLCZ)99494000000061009920220607d2021 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierA companion to impressionism /edited by André DombrowskiHoboken, New Jersey :John Wiley & Sons,[2021]©20211 online resource (637 pages)Blackwell Companions to Art History1-119-37389-1 Blackwell companions to art history.Impressionism (Art)Painting, ModernImpressionism (Art)Painting, Modern.759.054Dombrowski AndréMiAaPQMiAaPQMiAaPQBOOK9910809882403321A companion to impressionism4008656UNINA02097nam0 2200433 i 450 VAN0011335120240806100748.601N978331914765920180108d2015 |0itac50 baengCH|||| |||||Principal bundlesthe classical caseStephen Bruce Sontz[Cham]Springer2015XV, 280 p.ill.24 cm001VAN000245062001 Universitext210 Berlin [etc]Springer1930-VAN00235201Principal bundles : the classical case244054014D21Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory) [MSC 2020]VANC033589MF53C05Connections, general theory [MSC 2020]VANC024061MF55R10Fiber bundles in algebraic topology [MSC 2020]VANC023896MF58A05Differentiable manifolds, foundations [MSC 2020]VANC024249MF78A25Electromagnetic theory, general [MSC 2020]VANC023180MF81T13Yang-Mills and other gauge theories in quantum field theory [MSC 2020]VANC023357MFConnectionsKW:KCurvatureKW:KDifferential geometryKW:KNon-commutative GeometryKW:KPrincipal bundlesKW:KCHChamVANL001889SontzStephen BruceVANV087490755560Springer <editore>VANV108073650ITSOL20250307RICAhttp://dx.doi.org/10.1007/978-3-319-14765-9E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08NVAN00113351BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08DLOAD e-book 0384 08eMF384 20180108 Principal bundles : the classical case2440540UNICAMPANIA