02052nam0 2200517 i 450 VAN0010438120240806100725.948N978-981-287-257-920151222d2014 |0itac50 baengSG|||| |||||Non-metrisable manifoldsDavid GauldSingapore [etc.]Springer2014XVI, 203 p.ill.24 cmVAN00241501Non-metrisable manifolds141005237BxxTopological dynamics [MSC 2020]VANC029254MF54E35Metric spaces, metrizability [MSC 2020]VANC022376MF57NxxTopological manifolds [MSC 2020]VANC023566MFBagpipe TheoremKW:KBrown’s Monotone Union TheoremKW:KContinuum HypothesisKW:KDynamics on ManifoldsKW:KExotic Structures on Long PlaneKW:KFoliations of the PlaneKW:KFoliations on ManifoldsKW:KHandlebodyKW:KLong LineKW:KMetrisability Criteria for ManifoldsKW:KNon-Hausdorff ManifoldsKW:KNon-metrisable ManifoldsKW:KPerfect Normality versus MetrisabilityKW:KPrüfer ManifoldKW:KSmooth manifoldsKW:KType I ManifoldKW:KSGSingaporeVANL000061GauldDavidVANV081413721164Springer <editore>VANV108073650ITSOL20240906RICAhttp://dx.doi.org/10.1007/978-981-287-257-9E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA CENTRO DI SERVIZIO SBAVAN15NVAN00104381BIBLIOTECA CENTRO DI SERVIZIO SBA15CONS SBA EBOOK 4313 15EB 4313 20191106 Non-metrisable manifolds1410052UNICAMPANIA