02108nam0 2200445 i 450 VAN0010390220240806100724.559N978-3-319-08690-320151130d2014 |0itac50 baengCH|||| |||||Control of nonholonomic systemsfrom sub-riemannian geometry to motion planningFrédéric JeanChamSpringer2014X, 104 p.ill.24 cm001VAN001025962001 SpringerBriefs in mathematics210 Berlin [etc.]Springer2011-VAN00241042Control of nonholonomic systems140985049K21Optimality conditions for problems involving relations other than differential equations [MSC 2020]VANC031385MF53C17Sub-Riemannian geometry [MSC 2020]VANC026654MF70F25Nonholonomic systems related to the dynamics of a system of particles [MSC 2020]VANC024188MF93-XXSystems theory; control [MSC 2020]VANC027040MF93B05Controllability [MSC 2020]VANC022780MF93B27Geometric methods [MSC 2020]VANC024190MF93C10Nonlinear systems in control theory [MSC 2020]VANC029009MFControl theoryKW:KMotion planningKW:KNilpotent systemsKW:KNonholonomic systemsKW:KSub-Riemannian geometryKW:KCHChamVANL001889JeanFrédéricVANV080993721265Springer <editore>VANV108073650ITSOL20240906RICAhttp://dx.doi.org/10.1007/978-3-319-08690-3E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA CENTRO DI SERVIZIO SBAVAN15NVAN00103902BIBLIOTECA CENTRO DI SERVIZIO SBA15CONS SBA EBOOK 4532 15EB 4532 20191106 Control of nonholonomic systems1409850UNICAMPANIA