02747nam0 2200505 i 450 VAN0010317420240806100722.442N978-3-319-01427-220151026d2014 |0itac50 baengCH|||| |||||Multi-band effective mass approximationsadvanced mathematical models and numerical techniquesMatthias Ehrhardt, Thomas Koprucki editorsChamSpringer2014XVI, 318 p.ill.24 cm001VAN000271292001 Lecture notes in computational science and engineering210 Berlin [etc.]Springer1997-94VAN00240301Multi-band effective mass approximations141018934L40Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.) [MSC 20210]VANC021572MF35J10Schrödinger operator, Schrödinger equation [MSC 2020]VANC022235MF35Q41Time-dependent Schrödinger equations and Dirac equations [MSC 2020]VANC029323MF65L15Numerical solution of eigenvalue problems involving ordinary differential equations [MSC 2020]VANC023037MF65N06Finite difference methods for boundary value problems involving PDEs [MSC 2020]VANC023044MF65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods for boundary value problems involving PDEs [MSC 2020]VANC021532MF81Q05Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics [MSC 2020]VANC022770MFKp-Schrödinger equationsKW:KModels of semiconductorsKW:KMulti-Band Effective Mass ApproximationsKW:KNano structuresKW:KNumerical simulation in quantum mechanicsKW:KPartial differential equationsKW:KQuantum DotsKW:KQuantum WellsKW:KQuantum wiresKW:KCHChamVANL001889EhrhardtMatthiasVANV080516KopruckiThomasVANV080517Springer <editore>VANV108073650ITSOL20240906RICAhttp://dx.doi.org/10.1007/978-3-319-01427-2E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA CENTRO DI SERVIZIO SBAVAN15NVAN00103174BIBLIOTECA CENTRO DI SERVIZIO SBA15CONS SBA EBOOK 4794 15EB 4794 20191107 Multi-band effective mass approximations1410189UNICAMPANIA