02403nam0 2200457 i 450 VAN0010290820240806100721.663N978-1-4939-0682-620151014d2014 |0itac50 baengUS|||| |||||k-Schur functions and affine Schubert calculusThomas Lam ... [et al.] New YorkSpringer ; Fields Institute for Research in the Mathematical Sciences2014VIII, 219 p.ill.24 cm001VAN000532292001 Fields Institute monographsThe Fields institute for research in mathematical sciences210 ProvidenceAmerican mathematical society300 Dal 2013 il luogo e l'editore variano in: New York : Springer33VAN00239854k-Schur functions and affine Schubert calculus141068605E05Symmetric functions and generalizations [MSC 2020]VANC022086MF05E10Combinatorial aspects of representation theory [MSC 2020]VANC025072MF14N15Classical problems, Schubert calculus [MSC 2020]VANC028921MF14N35Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects) [MSC 2020]VANC023980MF14RxxAffine geometry [MSC 2020]VANC023994MFAffine Schubert calculusKW:KCombinatoricsKW:KEnumerative geometryKW:KMacdonald polynomial positivityKW:KRepresentation TheoryKW:KSchubert basesKW:KStanley symmetric functionsKW:KUSNew YorkVANL000011LamThomasVANV080333Fields Institute for Research in Mathematical SciencesVANV041098650Springer <editore>VANV108073650ITSOL20240906RICAhttp://dx.doi.org/10.1007/978-1-4939-0682-6E-book – Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o ShibbolethBIBLIOTECA CENTRO DI SERVIZIO SBAVAN15NVAN00102908BIBLIOTECA CENTRO DI SERVIZIO SBA15CONS SBA EBOOK 4641 15EB 4641 20191106 K-Schur functions and affine Schubert calculus1410686UNICAMPANIA