02186nam0 2200469 i 450 VAN0005633920250402103144.565978-35-405-6954-120061120d1993 |0itac50 baengDE|||| |||||i e nncLie Semigroups and their ApplicationsJoachim Hilgert, Karl-Hermann NeebBerlin [etc.]Springer-Verlag1993XII, 315 p.24 cm001VAN001022502001 Lecture notes in mathematics210 Berlin [etc.]Springer155222A15Structure of topological semigroups [MSC 2020]VANC024320MF22A25Representations of general topological groups and semigroups [MSC 2020]VANC024321MF22E30Analysis on real and complex Lie groups [MSC 2020]VANC022552MF22E46Semisimple Lie groups and their representations [MSC 2020]VANC022569MF53C30Differential geometry of homogeneous manifolds [MSC 2020]VANC024114MF53C50Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics [MSC 2020]VANC023563MF53C75Geometric orders, order geometry [MSC 2020]VANC024322MFAlgebraKW:KHolomorphic extensionsKW:KInvariant coneKW:KLie groupsKW:KSemigroupsKW:KBerlinVANL000066HilgertJoachimVANV04480658870NeebKarl-HermannVANV04480760109Springer <editore>VANV108073650ITSOL20250801RICA/sebina/repository/catalogazione/documenti/Hilgert, Neeb - Lie semigroups and their applications.pdfContentsBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08VAN00056339BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08PREST 22-XX 1891 08 1687 I 20061120 Lie semigroups and their applications78684UNICAMPANIA