01868nam0 2200385 i 450 VAN0003048520240806100344.5135-404-1215-820041215d2001 |0itac50 baengDE|||| |||||Positive polynomialsfrom Hilbert's 17. problem to real algebraAlexander Prestel, Charles N. DelzellBerlinSpringer2001VIII, 267 p.24 cm001VAN000304862001 Springer monographs in mathematics210 Berlin [etc.]Springer1989-11E10Forms over real fields [MSC 2020]VANC023794MF12-XXField theory and polynomials [MSC 2020]VANC019746MF12D15Fields related with sums of squares (formally real fields, Pythagorean fields, etc.) [MSC 2020]VANC021770MF12J10Valued fields [MSC 2020]VANC020705MF13J25Ordered rings [MSC 2020]VANC023793MF13J30Real algebra [MSC 2020]VANC023792MF14P10Semialgebraic sets and related spaces [MSC 2020]VANC021496MFBerlinVANL000066PrestelAlexanderVANV02514758277DelzellCharles N.VANV02514862841Springer <editore>VANV108073650Delzell, C. N.Delzell, Charles N.VANV107274ITSOL20240906RICA/sebina/repository/catalogazione/documenti/Prestel, Delzell - Positive polynomials.pdfContentsBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICAIT-CE0120VAN08VAN00030485BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08PREST 12-XX 3445 08 5764 I 20041215 Positive polynomials1430460UNICAMPANIA