03482nam 22007332 450 991078196120332120151005020621.01-107-23223-61-139-10184-61-139-10364-41-299-40566-51-139-10118-81-139-09916-71-139-00384-4(CKB)2550000000061523(EBL)802953(OCoLC)826452027(SSID)ssj0000572390(PQKBManifestationID)11349097(PQKBTitleCode)TC0000572390(PQKBWorkID)10528654(PQKB)11676618(UkCbUP)CR9781139003841(Au-PeEL)EBL802953(CaPaEBR)ebr10576305(CaONFJC)MIL471816(MiAaPQ)EBC802953(PPN)261367102(EXLCZ)99255000000006152320110124d2011|||| uy| 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierFusion systems in algebra and topology /Michael Aschbacher, Radha Kessar, Bob Oliver[electronic resource]Cambridge :Cambridge University Press,2011.1 online resource (vi, 320 pages) digital, PDF file(s)London Mathematical Society lecture note series ;391Title from publisher's bibliographic system (viewed on 05 Oct 2015).1-139-09986-8 1-107-60100-2 Includes bibliographical references and index.Introduction to fusion systems -- The local theory of fusion systems -- Fusion and homotopy theory -- Fusion and representation theory -- Appendix A. Background facts about groups.A fusion system over a p-group S is a category whose objects form the set of all subgroups of S, whose morphisms are certain injective group homomorphisms, and which satisfies axioms first formulated by Puig that are modelled on conjugacy relations in finite groups. The definition was originally motivated by representation theory, but fusion systems also have applications to local group theory and to homotopy theory. The connection with homotopy theory arises through classifying spaces which can be associated to fusion systems and which have many of the nice properties of p-completed classifying spaces of finite groups. Beginning with a detailed exposition of the foundational material, the authors then proceed to discuss the role of fusion systems in local finite group theory, homotopy theory and modular representation theory. This book serves as a basic reference and as an introduction to the field, particularly for students and other young mathematicians.London Mathematical Society lecture note series ;391.Fusion Systems in Algebra & TopologyCombinatorial group theoryTopological groupsAlgebraic topologyCombinatorial group theory.Topological groups.Algebraic topology.512/.2MAT002000bisacshAschbacher Michael1944-61453Kessar RadhaOliver Robert1949-UkCbUPUkCbUPBOOK9910781961203321Fusion systems in algebra and topology3761524UNINA02205nam0 22003491i 450 VAN0001937220250304085325.79888-464-0657-520040709d1998 |0itac50 baitaIT|||| |||||i e nAnoressia mentale dell'adolescenzamodelli teorici, diagnostici e terapeuticiFrancesco Montecchicon la collaborazione di Marco Cappa ... [et al.]MilanoAngeli1998399 p.ill.22 cmTra i disturbi del comportamento alimentare (DCA), l'anoressia mentale è la forma più grave e impegnativa da cui possono originarsi anche le altre, soprattutto la bulimia. Fenomeno sociale e culturale del nostro tempo con radici antiche, ha subito in questi ultimi anni un notevole incremento. L'interazione di processi psichici e somatici, che complicano i quadri clinici, richiede il riconoscimento del senso psichico della malattia, perché possa essere effettuato un trattamento del disturbo alimentare. In pratica il volume intende: offrire una visione culturale dell'anoressia, indicare modelli teorici, diagnostici e terapeutici, fornire degli indicatori predittivi di rischio, utilizzabili per il precoce rilevamento della malattia.001VAN000215312001 Psicoterapie210 MilanoAngeli1993-26Anoressia mentaleAdolescenzaVANC009528FIMilanoVANL000284616.8526221MontecchiFrancescoVANV003485224212CappaMarcoVANV242732FrancoAngeli <editore>VANV107955650ITSOL20250307RICAhttps://www.francoangeli.it/Libro/Anoressia-mentale-dell%27adolescenza.?Id=4393https://www.francoangeli.it/Libro/Anoressia-mentale-dell%27adolescenza.?Id=4393BIBLIOTECA DEL DIPARTIMENTO DI PSICOLOGIAIT-CE0119VAN16VAN00019372BIBLIOTECA DEL DIPARTIMENTO DI PSICOLOGIA16CONS 2093 16LET6484 20040709 Anoressia mentale dell'adolescenza818918UNICAMPANIA