00796nam0-22002771i-450-99000620145040332119980601000620145FED01000620145(Aleph)000620145FED0100062014519980601d1863----km-y0itay50------ba--------00-yyProgramma di un corso compiuto di diritto internazionaleGiovanni Beltrano.Napolitip. Perrotti186328 p.24 cm341Beltrano,Giovanni406475ITUNINARICAUNIMARCBK990006201450403321SALA I OP. I 16639FGBCFGBCProgramma di un corso compiuto di diritto internazionale648193UNINAGIU0101865nam0 2200385 i 450 SUN012673220200217014544.8100.00N978-3-030-02781-020200214d2019 |0engc50 baengCH|||| |||||*Applied Stochastic Control of Jump DiffusionsBernt Øksendal, Agnès Sulem3. edChamSpringer2019xvi, 436 p.ill.24 cm001SUN00245062001 *Universitext210 BerlinSpringer.93E20Optimal stochastic control [MSC 2020]MFSUNC01994649J40Variational inequalities [MSC 2020]MFSUNC02006891GxxActuarial science and mathematical finance [MSC 2020]MFSUNC02009365MxxNumerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems [MSC 2020]MFSUNC02083191A23Differential games (aspects of game theory) [MSC 2020]MFSUNC02288760G40Stopping times; optimal stopping problems; gambling theory [MSC 2020]MFSUNC02450647J20Variational and other types of inequalities involving nonlinear operators (general) [MSC 2020]MFSUNC028869CHChamSUNL001889Øksendal, BerntSUNV098127780994Sulem, AgnèsSUNV098128286541SpringerSUNV000178650ITSOL20210503RICAhttp://doi.org/10.1007/978-3-030-02781-0SUN0126732UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08CONS e-book 1513 08eMF1513 20200214 Applied Stochastic Control of Jump Diffusions1668161UNICAMPANIA00991nam a2200265 i 450099100211231970753620020507160250.0000609s1994 uk ||| | eng 0521441927b11610529-39ule_instLE02730684ExLDip.to Studi GiuridiciitaR-XV/CDuncan-Jones, Richard187099Money and government in the Roman empire /Richard Duncan-JonesCambridge :Univ. of Cambridge press,1994xix, 300 p. :ill. ;24 cm.Include: riferimenti bibliografici (p. 269-283) e indiceMonetaRomaStoria.b1161052921-09-0602-07-02991002112319707536LE027 R-XV/C 181LE027-3716le027-E0.00-l- 00000.i1182502902-07-02Money and government in the Roman Empire178300UNISALENTOle02701-01-00ma -enguk 0105384nam 22008295 450 991043815790332120200701011447.097814899936259781461471165 (ebook)0072-5285 (ISSN)10.1007/978-1-4614-7116-5(CKB)2670000000393918(EBL)1317525(OCoLC)870244209(SSID)ssj0000936062(PQKBManifestationID)11948070(PQKBTitleCode)TC0000936062(PQKBWorkID)10961345(PQKB)10614493(DE-He213)978-1-4614-7116-5(MiAaPQ)EBC1317525(Au-PeEL)EBL1317525(CaPaEBR)ebr10983436(PPN)17048842X(EXLCZ)99267000000039391820130619d2013 u| 0engtxtrdacontentnrdamediancrdacarrierQuantum Theory for Mathematicians /by Brian C. Hall1st ed. 2013.New York, NY :Springer New York :Imprint: Springer,2013.XVI, 554 p. gráf. ;24 cmGraduate Texts in Mathematics,0072-5285 ;267Incluye referencias bibliográficas (p. 545-548) e índice1 The Experimental Origins of Quantum Mechanics -- 2 A First Approach to Classical Mechanics -- 3 A First Approach to Quantum Mechanics -- 4 The Free Schrödinger Equation -- 5 A Particle in a Square Well -- 6 Perspectives on the Spectral Theorem -- 7 The Spectral Theorem for Bounded Self-Adjoint Operators: Statements -- 8 The Spectral Theorem for Bounded Sef-Adjoint Operators: Proofs -- 9 Unbounded Self-Adjoint Operators -- 10 The Spectral Theorem for Unbounded Self-Adjoint Operators -- 11 The Harmonic Oscillator -- 12 The Uncertainty Principle -- 13 Quantization Schemes for Euclidean Space -- 14 The Stone–von Neumann Theorem -- 15 The WKB Approximation -- 16 Lie Groups, Lie Algebras, and Representations -- 17 Angular Momentum and Spin -- 18 Radial Potentials and the Hydrogen Atom -- 19 Systems and Subsystems, Multiple Particles -- V Advanced Topics in Classical and Quantum Mechanics -- 20 The Path-Integral Formulation of Quantum Mechanics -- 21 Hamiltonian Mechanics on Manifolds -- 22 Geometric Quantization on Euclidean Space -- 23 Geometric Quantization on Manifolds -- A Review of Basic Material -- References. - Index.Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces.  The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.Graduate Texts in Mathematics,0072-5285 ;267Mathematical physicsQuantum theoryFunctional analysisTopological groupsLie groupsPhysicsMathematical Physicshttps://scigraph.springernature.com/ontologies/product-market-codes/M35000Mathematical Applications in the Physical Scienceshttps://scigraph.springernature.com/ontologies/product-market-codes/M13120Quantum Physicshttps://scigraph.springernature.com/ontologies/product-market-codes/P19080Functional Analysishttps://scigraph.springernature.com/ontologies/product-market-codes/M12066Topological Groups, Lie Groupshttps://scigraph.springernature.com/ontologies/product-market-codes/M11132Mathematical Methods in Physicshttps://scigraph.springernature.com/ontologies/product-market-codes/P19013Mathematical physics.Quantum theory.Functional analysis.Topological groups.Lie groups.Physics.Mathematical Physics.Mathematical Applications in the Physical Sciences.Quantum Physics.Functional Analysis.Topological Groups, Lie Groups.Mathematical Methods in Physics.530.12Hall Brian Cauthttp://id.loc.gov/vocabulary/relators/aut149974MiAaPQMiAaPQMiAaPQBOOK9910438157903321Quantum theory for mathematicians836756UNINA