01970nam0 2200397 i 450 SUN011385020180126100350.1780.00N978-3-319-24166-120180122d2015 |0engc50 baengCH|||| |||||*Arithmetically Cohen-Macaulay sets of points in P^1 x P^1Elena Guardo, Adam Van Tuyl[Cham] : Springer, 2015VIII134 p.ill. ; 24 cmPubblicazione in formato elettronico001SUN01025962001 *SpringerBriefs in mathematics210 BerlinSpringer2011-.05A17Combinatorial aspects of partitions of integers [MSC 2020]MFSUNC01978941A05Interpolation in approximation theory [MSC 2020]MFSUNC02094513C14Cohen-Macaulay modules [MSC 2020]MFSUNC02206813D02Syzygies, resolutions, complexes and commutative rings [MSC 2020]MFSUNC02249113D40Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series [MSC 2020]MFSUNC02392513H10Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.) [MSC 2020]MFSUNC02395414M05Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)[MSC 2020]MFSUNC02397813A02Graded rings [MSC 2020]MFSUNC029352CHChamSUNL001889Guardo, ElenaSUNV087939755672Tuyl, Adam : vanSUNV087940755673SpringerSUNV000178650ITSOL20210503RICAhttp://dx.doi.org/10.1007/978-3-319-24166-1SUN0113850UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08CONS e-book 0111 08eMF111 20180122 Arithmetically Cohen-Macaulay sets of points in P^1 x P^11522810UNICAMPANIA