01873nam0 2200397 i 450 SUN011368720180126083554.4730.00N978-3-319-21200-520180117d2015 |0engc50 baengCH|||| |||||The *equationally-defined commutatora study in equational logic and algebraJanusz Czelakowski[Cham] : Birkhäuser : Springer, 2015IX292 p.ill. ; 24 cmPubblicazione in formato elettronico08B10Congruence modularity, congruence distributivity [MSC 2020]MFSUNC02227608-XXGeneral algebraic systems [MSC 2020]MFSUNC02242103C05Equational classes, universal algebra in model theory [MSC 2020]MFSUNC02242308A30Subalgebras, congruence relations [MSC 2020]MFSUNC02521503G27Abstract algebraic logic [MSC 2020]MFSUNC03374406C05Modular lattices, Desarguesian lattices [MSC 2020]MFSUNC03374508A35Automorphisms, endomorphisms of algebraic structures [MSC 2020]MFSUNC03374608B05Equational logic, Mal'tsev conditions [MSC 2020]MFSUNC03374708C15Quasivarieties [MSC 2020]MFSUNC033748CHChamSUNL001889Czelakowski, JanuszSUNV087784755628SpringerSUNV000178650BirkhäuserSUNV000319650ITSOL20210503RICAhttp://dx.doi.org/10.1007/978-3-319-21200-5SUN0113687UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08CONS e-book 0469 08eMF469 20180117 Equationally-defined commutator1522727UNICAMPANIA