01743nam0 2200373 i 450 SUN010390220151130111404.9828-3-319-08689-70.00N978-3-319-08690-320151130d2014 |0engc50 baengCH|||| |||||*Control of nonholonomic systemsfrom sub-riemannian geometry to motion planningFrédéric JeanCham : Springer, 2014X104 p.ill. ; 24 cmPubblicazione in formato elettronico001SUN01025962001 *SpringerBriefs in mathematics210 BerlinSpringer2011-.93B05Controllability [MSC 2020]MFSUNC02278070F25Nonholonomic systems related to the dynamics of a system of particles [MSC 2020]MFSUNC02418893B27Geometric methods [MSC 2020]MFSUNC02419053C17Sub-Riemannian geometry [MSC 2020]MFSUNC02665493-XXSystems theory; control [MSC 2020]MFSUNC02704093C10Nonlinear systems in control theory [MSC 2020]MFSUNC02900949K21Optimality conditions for problems involving relations other than differential equations [MSC 2020]MFSUNC031385CHChamSUNL001889Jean, FrédéricSUNV080993721265SpringerSUNV000178650ITSOL20201026RICAhttp://dx.doi.org/10.1007/978-3-319-08690-3SUN0103902BIBLIOTECA CENTRO DI SERVIZIO SBA15CONS SBA EBOOK 4532 15EB 4532 20191106 Control of nonholonomic systems1409850UNICAMPANIA