01804nam0 2200349 i 450 SUN005617420180510095431.923978-03-87563-51-00.0020061116d1992 |0engc50 baengDE|||| |||||*Orthomorphism graphs of groupsAnthony B. EvansBerlinSpringer1992VIII, 114 p.25 cm.001SUN01022502001 *Lecture notes in mathematics1535210 Berlin [etc.]Springer1964-215 Dal 2011 i volumi sono disponibili in formato elettronico.05-XXCombinatorics [MSC 2020]MFSUNC01981251E15Finite affine and projective planes (geometric aspects) [MSC 2020]MFSUNC02126505B15Orthogonal arrays, Latin squares, Room squares [MSC 2020]MFSUNC02217305C25Graphs and abstract algebra (groups, rings, fields, etc.) [MSC 2020]MFSUNC02240211T22Cyclotomy [MSC 2020]MFSUNC02360920B25Finite automorphism groups of algebraic, geometric, or combinatorial structures [MSC 2020]MFSUNC02361051E14Finite partial geometries (general), nets, partial spreads [MSC 2020]MFSUNC028897BerlinSUNL000066Evans, Anthony B.SUNV04463860217SpringerSUNV000178650ITSOL20201019RICA/sebina/repository/catalogazione/documenti/Evans - Orthomorphism graphs of groups.pdfContentsSUN0056174UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA08PREST 05-XX 1305 08 1386 I 20061116 Orthomorphism graphs of groups78763UNICAMPANIA03999nam 22011295 450 991015474650332120190708092533.01-4008-8237-010.1515/9781400882373(CKB)3710000000628068(MiAaPQ)EBC4738712(DE-B1597)468023(OCoLC)979836553(DE-B1597)9781400882373(EXLCZ)99371000000062806820190708d2016 fg engurcnu||||||||rdacontentrdamediardacarrierAn Essay Toward a Unified Theory of Special Functions. (AM-18), Volume 18 /Clifford TruesdellPrinceton, NJ : Princeton University Press, [2016]©19491 online resource (197 pages) illustrationsAnnals of Mathematics Studies ;3480-691-09577-9 Bibliography.PREFACE -- TABLE OF CONTENTS -- Chapter I. The Object and Plan of This Essay -- Chapter II. Reduction to The F-Equation -- Chapter III. Existence and Uniqueness Theorems -- Chapter IV. Methods of Treating Special Functions Based on The Uniqueness Theorem for The Condition F(z, αO) = ψ (z) -- Chapter V. Remarks on Solutions Such That F(z, αO) = ψ (z) -- Chapter VI. Conclusions and Unsolved Problems -- Appendix I. Special Functions -- Appendix II. Operators -- Appendix III. Examples of Equations of Type (3-4) Not Reducible to The F-Equation -- BibliographyThe description for this book, An Essay Toward a Unified Theory of Special Functions. (AM-18), Volume 18, will be forthcoming.Annals of mathematics studies ;no. 18.Functional equationsAddition.Antiderivative.Asymptotic formula.Bessel function.Beta function.Boundary value problem.Change of variables.Closed-form expression.Coefficient.Combination.Continuous function.Corollary.Differential equation.Enumeration.Equation.Existential quantification.Explicit formula.Exponential function.Factorial.Function (mathematics).Functional equation.Hermite polynomials.Hypergeometric function.Integer.Laguerre polynomials.Laplace transform.Legendre function.Linear difference equation.Linear differential equation.Mathematical induction.Mathematician.Monomial.Natural number.Number theory.Ordinary differential equation.Parameter.Periodic function.Polygamma function.Polynomial.Potential theory.Power series.Rectangle.Recurrence relation.Remainder.Scientific notation.Sequent.Simple function.Singular solution.Special case.Special functions.Summation.Theorem.Theory.Uniqueness theorem.Variable (mathematics).Without loss of generality.Functional equations.517.5Truesdell Clifford, 17725DE-B1597DE-B1597BOOK9910154746503321An Essay Toward a Unified Theory of Special Functions. (AM-18), Volume 182785797UNINA