00972nam0 2200277 450 00003623020140312105732.020140312d1966----km-y0itaa50------baitaIT<<Il>> canto XXIV del ParadisoMario MarcazzanFirenzeLe Monnier196635 p.22 cmLectura Dantis Scaligera2001Lectura Dantis ScaligeraAlighieri,DanteDivina Commedia. Paradiso851.1(22. ed.)Poesia italiana fino al 1375Marcazzan,Mario158614ITUniversità della Basilicata - B.I.A.REICATunimarc000036230Canto XXIV del Paradiso101569UNIBASLETTERESTD0980120140312BAS011057BAS01BAS01BOOKBASA1Polo Storico-UmanisticoGENCollezione generaleFP/5537055370L553702014031202Prestabile Generale03254nam 22006135 450 991057485770332120251113174115.09783031044281(electronic bk.)978303104427410.1007/978-3-031-04428-1(MiAaPQ)EBC7015335(Au-PeEL)EBL7015335(CKB)23689196500041EBL7015335(AU-PeEL)EBL7015335(PPN)263894118(OCoLC)1329437596(DE-He213)978-3-031-04428-1(EXLCZ)992368919650004120220611d2022 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierReal Homotopy of Configuration Spaces Peccot Lecture, Collège de France, March & May 2020 /by Najib Idrissi1st ed. 2022.Cham :Springer International Publishing :Imprint: Springer,2022.1 online resource (201 pages)Lecture Notes in Mathematics,1617-9692 ;2303Description based upon print version of record.Print version: Idrissi, Najib Real Homotopy of Configuration Spaces Cham : Springer International Publishing AG,c2022 9783031044274 This volume provides a unified and accessible account of recent developments regarding the real homotopy type of configuration spaces of manifolds. Configuration spaces consist of collections of pairwise distinct points in a given manifold, the study of which is a classical topic in algebraic topology. One of this theory’s most important questions concerns homotopy invariance: if a manifold can be continuously deformed into another one, then can the configuration spaces of the first manifold be continuously deformed into the configuration spaces of the second? This conjecture remains open for simply connected closed manifolds. Here, it is proved in characteristic zero (i.e. restricted to algebrotopological invariants with real coefficients), using ideas from the theory of operads. A generalization to manifolds with boundary is then considered. Based on the work of Campos, Ducoulombier, Lambrechts, Willwacher, and the author, the book covers a vast array of topics, including rational homotopy theory, compactifications, PA forms, propagators, Kontsevich integrals, and graph complexes, and will be of interest to a wide audience.Lecture Notes in Mathematics,1617-9692 ;2303Algebraic topologyAlgebra, HomologicalManifolds (Mathematics)Algebraic TopologyCategory Theory, Homological AlgebraManifolds and Cell ComplexesAlgebraic topology.Algebra, Homological.Manifolds (Mathematics)Algebraic Topology.Category Theory, Homological Algebra.Manifolds and Cell Complexes.514.2Idrissi Najib1241742MiAaPQMiAaPQMiAaPQ9910574857703321Real Homotopy of Configuration Spaces2880469UNINA