01394nam 2200385 450 00001550320050718115600.03-540-08090-220030728d1978----km-y0itay0103----baengDEK-theoryan introductionMax KaroubiBerlin [etc.]Springer1978XVIII, 308 p.ill.25 cm.Grundlehren der mathematischen Wissenschaften2262001Grundlehren der mathematischen WissenschaftenTopologia514.23(21. ed.)Topologia. Teorie dell'omologia e della coomologia55-XXAlgebraic topology18F25Category theory; homological algebra. Categories and geometry. Algebraic K-theory and L-theoryKaroubi,Max57742ITUniversità della Basilicata - B.I.A.RICAunimarc000015503K-theory82733UNIBASMONSCISCIENZEEXT0020120030728BAS01170220050601BAS011755batch0120050718BAS01105220050718BAS01111120050718BAS01114120050718BAS011156BAS01BAS01BOOKBASA2Polo Tecnico-ScientificoGENCollezione generaleMAT62617S626172003072851Riservati01615nam 2200361z- 450 9910346913103321202102111000019300(CKB)4920000000101391(oapen)https://directory.doabooks.org/handle/20.500.12854/47753(oapen)doab47753(EXLCZ)99492000000010139120202102d2010 |y 0engurmn|---annantxtrdacontentcrdamediacrrdacarrierFloquet Theory for a Class of Periodic Evolution Equations in an Lp-SettingKIT Scientific Publishing20101 online resource (IV, 130 p. p.)3-86644-542-3 In this work we explore the Floquet theory for evolution equations of the form u'(t)+A_t u(t)=0 (t real) where the operators A_t periodically depend on t and the function u takes values in a UMD Banach space X.We impose a suitable condition on the operator family (A_t) and their common domain, in particular a decay condition for certain resolvents, to obtain the central result that all exponentially bounded solutions can be described as a superposition of a fixed family of Floquet solutions.Bloch solutionFloquet theoryLp settingperiodic evolution equationsuperposition principleGauss Thomasauth1290976BOOK9910346913103321Floquet Theory for a Class of Periodic Evolution Equations in an Lp-Setting3021715UNINA