01309nam 2200373 450 00000604020070503173400.020001122d1948----km-y0itay0103----baengUS<<The>> portable Swiftedited, and with an introduction, by Carl Van Doren1 0004888New YorkViking press1948VI, 601 p.19 cm.828.508(20 ed.)Scritti miscellanei inglesi. 1702-1745. Scritti in prosaSwift,Jonathan<1667-1745>154535Van Doren,Carl<1885-1950>ITUniversità della Basilicata - B.I.A.RICAunimarc000006040Portable Swift73912UNIBASMONLETMONOGRLETTEREDEBONIS0120001122BAS011357TROMBONE2020001128BAS01132420050601BAS011753batch0120050718BAS01104920050718BAS01110820050718BAS01113820050718BAS011152BATCH0020070503BAS011734BAS01BAS01BOOKBASA1Polo Storico-UmanisticoGENCollezione generaleFP/48064806L48062000112202Prestabile Generale02674nam 2200517 450 00001408120050718115500.03-540-50174-620030613d1988----km-y0itay0103----baengDEDynamical systemsproceedings of the special year held at the University of Maryland, College Park, 1986-87J. C. Alexander, ed.Berlin [etc.]Springerc1988VIII, 726 p.ill.25 cm.Lecture notes in mathematics13422001Lecture notes in mathematicsSistemi dinamiciCongressiSistemi ergodiciCongressiTopologiaCongressi514(21. ed.)Topologia54H20General topology. Connections with other structures, applications. Topological dynamics37AxxDynamical systems and ergodic theory. Ergodic theory28DxxMeasure and integration. Measure-theoretic ergodic theory34C28Ordinary differential equations. Qualitative theory. Complex behavior, chaotic systems37DxxDynamical systems and ergodic theory. Dynamical systems with hyperbolic behavior37D45Dynamical systems and ergodic theory. Dynamical systems with hyperbolic behavior. Strange attractors, chaotic dynamics70K55Mechanics of particles and systems. Nonlinear dynamics. Transition to stochasticity (cahotic behavior)37D40Dynamical systems and ergodic theory. Dynamical systems with hyperbolic behavior. Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)53D25Differential geometry. Symplectic geometry, contact geometry. Geodesic flows37C85Dynamical systems and ergodic theory. Smooth dynamical systems: general theory. Dynamics of group actions other than Z and R, and foliations57R30Manifolds and cell complexes. Differential topology. Foliations; geometric theoryAlexander,James C.ITUniversità della Basilicata - B.I.A.RICAunimarc000014081Dynamical systems80233UNIBASMONSCISCIENZEEXT0030120030613BAS01155620050601BAS011755batch0120050718BAS01105220050718BAS01111120050718BAS01114120050718BAS011155BAS01BAS01BOOKBASA2Polo Tecnico-ScientificoGENCollezione generaleMAT57803S578032003061351Riservati