01394nam 2200409 450 00000463420110131114800.00-471-12948-8--------d1997----km-y0itay0103----baengUS<<The>> organic chem lab survival manuala student's guide to techniquesJames W. Zubrick4. ed.<<John>> WileyNew York ... [etc.]c1997XVI, 382 p.ill.24 cm.Chimica organicamanuali di laboratorio547.0078(20. ed.)Zubrick,James W.439371ITUniversità della Basilicata - B.I.A.RICAunimarc000004634Organic chem lab survival manual73339UNIBASMONAGRMONOGRAGRARIAMEDURI0120000607BAS01102820000913BAS01142620000920BAS01183220001010BAS01163520050601BAS011753batch0120050718BAS01104820050718BAS01110720050718BAS01113720050718BAS011151ATR4020110131BAS011148BAS01BAS01BOOKBASA2Polo Tecnico-ScientificoDIDDidatticaPTS.c3.p4.9AGR/9137291372A913722000060798Consultazione07063nam 22017895 450 991015474260332120190708092533.01-4008-8165-X10.1515/9781400881659(CKB)3710000000631395(SSID)ssj0001651343(PQKBManifestationID)16425723(PQKBTitleCode)TC0001651343(PQKBWorkID)13483741(PQKB)11310897(MiAaPQ)EBC4738546(DE-B1597)468011(OCoLC)979970558(DE-B1597)9781400881659(EXLCZ)99371000000063139520190708d2016 fg engurcnu||||||||txtccrTopics in Transcendental Algebraic Geometry. (AM-106), Volume 106 /Phillip A. GriffithsPrinceton, NJ : Princeton University Press, [2016]©19841 online resource (328 pages) illustrationsAnnals of Mathematics Studies ;266Bibliographic Level Mode of Issuance: Monograph0-691-08339-8 0-691-08335-5 Frontmatter -- Table of Contents -- INTRODUCTION / Griffiths, Phillip -- Chapter I. VARIATION OF HODGE STRUCTURE / Griffiths, Phillip / Tu, Loring -- Chapter II. CURVATURE PROPERTIES OF THE HODGE BUNDLES / Griffiths, Phillip / Tu, Loring -- Chapter III. INFINITESIMAL VARIATION OF HODGE STRUCTURE / Griffiths, Phillip / Tu, Loring -- Chapter IV. ASYMPTOTIC BEHAVIOR OF A VARIATION OF HODGE STRUCTURE / Griffiths, Phillip / Tu, Loring -- Chapter V. MIXED HODGE STRUCTURES, COMPACTIFICATIONS AND MONODROMY WEIGHT FILTRATION / Cattani, Eduardo H. -- Chapter VI. THE CLEMENS-SCHMID EXACT SEQUENCE AND APPLICATIONS / Morrison, David R. -- Chapter VII DEGENERATION OF HODGE BUNDLES (AFTER STEENBRINK) / Zucker, Steven -- Chapter VIII. INFINITESIMAL TORELLI THEOREMS AND COUNTEREXAMPLES TO TORELLI PROBLEMS / Catanese, Fabrizio M.E. -- Chapter IX. THE TORELLI PROBLEM FOR ELLIPTIC PENCILS / Chakiris, Ken -- Chapter X. THE PERIOD MAP AT THE BOUNDARY OF MODULI / Friedman, Robert -- Chapter XI. THE GENERIC TORELLI PROBLEM FOR PRYM VARIETIES AND INTERSECTIONS OF THREE QUADRICS / Smith, Roy -- Chapter XII. INFINITESIMAL VARIATION OF HODGE STRUCTURE AND THE GENERIC GLOBAL TORELLI THEOREM / Griffiths, Phillip / Tu, Loring -- Chapter XIII. GENERIC TORELLI AND VARIATIONAL SCHOTTKY / Donagi, Ron -- Chapter XIV. INTERMEDIATE JACOBIANS AND NORMAL FUNCTIONS / Zucker, Steven -- Chapter XV. EXTENDABILITY OF NORMAL FUNCTIONS ASSOCIATED TO ALGEBRAIC CYCLES / Zein, Fouad El / Zucker, Steven -- Chapter XVI. SOME RESULTS ABOUT ABEL-JACOBI MAPPINGS / Clemens, Herbert -- Chapter XVII. INFINITESIMAL INVARIANT OF NORMAL FUNCTIONS / Griffiths, Phillip -- BackmatterThe description for this book, Topics in Transcendental Algebraic Geometry. (AM-106), Volume 106, will be forthcoming.Annals of mathematics studies ;Number 106.Geometry, AlgebraicHodge theoryTorelli theoremAbelian integral.Algebraic curve.Algebraic cycle.Algebraic equation.Algebraic geometry.Algebraic integer.Algebraic structure.Algebraic surface.Arithmetic genus.Arithmetic group.Asymptotic analysis.Automorphism.Base change.Bilinear form.Bilinear map.Cohomology.Combinatorics.Commutative diagram.Compactification (mathematics).Complete intersection.Complex manifold.Complex number.Computation.Deformation theory.Degeneracy (mathematics).Differentiable manifold.Dimension (vector space).Divisor (algebraic geometry).Divisor.Elliptic curve.Elliptic surface.Equation.Exact sequence.Fiber bundle.Function (mathematics).Fundamental class.Geometric genus.Geometry.Hermitian symmetric space.Hodge structure.Hodge theory.Homology (mathematics).Homomorphism.Homotopy.Hypersurface.Intersection form (4-manifold).Intersection number.Irreducibility (mathematics).Isomorphism class.Jacobian variety.K3 surface.Kodaira dimension.Kronecker's theorem.Kummer surface.Kähler manifold.Lie algebra bundle.Lie algebra.Linear algebra.Linear algebraic group.Line–line intersection.Mathematical induction.Mathematical proof.Mathematics.Modular arithmetic.Module (mathematics).Moduli space.Monodromy matrix.Monodromy theorem.Monodromy.Nilpotent orbit.Normal function.Open set.Period mapping.Permutation group.Phillip Griffiths.Point at infinity.Pole (complex analysis).Polynomial.Projective space.Pullback (category theory).Quadric.Regular singular point.Resolution of singularities.Riemann–Roch theorem for surfaces.Scientific notation.Set (mathematics).Special case.Spectral sequence.Subgroup.Submanifold.Surface of general type.Surjective function.Tangent bundle.Theorem.Topology.Torelli theorem.Transcendental number.Vector space.Zariski topology.Zariski's main theorem.Geometry, Algebraic.Hodge theory.Torelli theorem.512/.33SK 240rvkGriffiths Phillip A., DE-B1597DE-B1597BOOK9910154742603321Topics in Transcendental Algebraic Geometry. (AM-106), Volume 1062785792UNINA07005nam 22017175 450 991015474620332120230808192331.01-4008-8259-110.1515/9781400882595(CKB)3710000000628084(MiAaPQ)EBC4738753(DE-B1597)467916(OCoLC)979743328(DE-B1597)9781400882595(EXLCZ)99371000000062808420190708d2016 fg engurcnu||||||||rdacontentrdamediardacarrierRigid Local Systems. (AM-139), Volume 139 /Nicholas M. KatzPrinceton, NJ : Princeton University Press, [2016]©19961 online resource (233 pages)Annals of Mathematics Studies ;3210-691-01119-2 0-691-01118-4 Includes bibliographical references.Frontmatter -- Contents -- Introduction -- CHAPTER 1. First results on rigid local systems -- CHAPTER 2. The theory of middle convolution -- CHAPTER 3. Fourier Transform and rigidity -- CHAPTER 4. Middle convolution: dependence on parameters -- CHAPTER 5. Structure of rigid local systems -- CHAPTER 6. Existence algorithms for rigids -- CHAPTER 7. Diophantine aspects of rigidity -- CHAPTER 8. Motivic description of rigids -- CHAPTER 9. Grothendieck's p-curvature conjecture for rigids -- ReferencesRiemann introduced the concept of a "local system" on P1-{a finite set of points} nearly 140 years ago. His idea was to study nth order linear differential equations by studying the rank n local systems (of local holomorphic solutions) to which they gave rise. His first application was to study the classical Gauss hypergeometric function, which he did by studying rank-two local systems on P1- {0,1,infinity}. His investigation was successful, largely because any such (irreducible) local system is rigid in the sense that it is globally determined as soon as one knows separately each of its local monodromies. It became clear that luck played a role in Riemann's success: most local systems are not rigid. Yet many classical functions are solutions of differential equations whose local systems are rigid, including both of the standard nth order generalizations of the hypergeometric function, n F n-1's, and the Pochhammer hypergeometric functions. This book is devoted to constructing all (irreducible) rigid local systems on P1-{a finite set of points} and recognizing which collections of independently given local monodromies arise as the local monodromies of irreducible rigid local systems. Although the problems addressed here go back to Riemann, and seem to be problems in complex analysis, their solutions depend essentially on a great deal of very recent arithmetic algebraic geometry, including Grothendieck's etale cohomology theory, Deligne's proof of his far-reaching generalization of the original Weil Conjectures, the theory of perverse sheaves, and Laumon's work on the l-adic Fourier Transform.Annals of mathematics studies ;no. 139.Differential equationsNumerical solutionsHypergeometric functionsSheaf theoryAdditive group.Alexander Grothendieck.Algebraic closure.Algebraic differential equation.Algebraically closed field.Algorithm.Analytic continuation.Automorphism.Axiom of choice.Bernhard Riemann.Big O notation.Calculation.Carlos Simpson.Coefficient.Cohomology.Commutator.Compactification (mathematics).Comparison theorem.Complex analytic space.Complex conjugate.Complex manifold.Conjecture.Conjugacy class.Convolution.Corollary.Cube root.Cusp form.De Rham cohomology.Differential equation.Dimension.Dimensional analysis.Discrete valuation ring.Disjoint union.Divisor.Duality (mathematics).Eigenfunction.Eigenvalues and eigenvectors.Elliptic curve.Equation.Equivalence of categories.Exact sequence.Existential quantification.Finite field.Finite set.Fourier transform.Functor.Fundamental group.Generic point.Ground field.Hodge structure.Hypergeometric function.Integer.Invertible matrix.Isomorphism class.Jordan normal form.Level of measurement.Linear differential equation.Local system.Mathematical induction.Mathematics.Matrix (mathematics).Monodromy.Monomial.Morphism.Natural filtration.Parameter.Parity (mathematics).Perfect field.Perverse sheaf.Polynomial.Prime number.Projective representation.Projective space.Pullback (category theory).Pullback.Rational function.Regular singular point.Relative dimension.Residue field.Ring of integers.Root of unity.Sequence.Sesquilinear form.Set (mathematics).Sheaf (mathematics).Six operations.Special case.Subgroup.Subobject.Subring.Suggestion.Summation.Tensor product.Theorem.Theory.Topology.Triangular matrix.Trivial representation.Vector space.Zariski topology.Differential equationsNumerical solutions.Hypergeometric functions.Sheaf theory.515/.35Katz Nicholas M., 59374DE-B1597DE-B1597BOOK9910154746203321Rigid Local Systems. (AM-139), Volume 1392839575UNINA