1.

Record Nr.

UNICASRML0251785

Autore

MONTANARI, Massimo

Titolo

I procedimenti di liquidazione e ripartizione dell'attivo fallimentare

Pubbl/distr/stampa

Padova, : Cedam, 1995

ISBN

8813191979

Soggetti

Diritto fallimentare

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNISOBSOBE00080674

Autore

Santoro Passarelli, Giuseppe

Titolo

2 / Giuseppe Santoro Passarelli

Pubbl/distr/stampa

Torino, : Giappichelli, [2006]

Descrizione fisica

P. XXIX, 530-1047 ; 24 cm

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



3.

Record Nr.

UNINA9910484994803321

Autore

Malyarenko Anatoliy

Titolo

Random Fields of Piezoelectricity and Piezomagnetism : Correlation Structures / / by Anatoliy Malyarenko, Martin Ostoja-Starzewski, Amirhossein Amiri-Hezaveh

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020

ISBN

3-030-60064-5

Edizione

[1st ed. 2020.]

Descrizione fisica

1 online resource (XI, 97 p. 2 illus., 1 illus. in color.)

Collana

SpringerBriefs in Mathematical Methods, , 2365-0834

Disciplina

530.141

Soggetti

Probabilities

Continuum mechanics

Magnetism

Condensed matter

Applied Probability

Continuum Mechanics

Condensed Matter Physics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Preface -- 1. Continuum Theory of Piezoelectricity and Piezomagnetism -- 2. Mathematical preliminaries -- 3. The Choice of a Basis in the Space VG -- 4. Correlation Structures -- References -- Index.

Sommario/riassunto

Random fields are a necessity when formulating stochastic continuum theories. In this book, a theory of random piezoelectric and piezomagnetic materials is developed. First, elements of the continuum mechanics of electromagnetic solids are presented. Then the relevant linear governing equations are introduced, written in terms of either a displacement approach or a stress approach, along with linear variational principles. On this basis, a statistical description of second-order (statistically) homogeneous and isotropic rank-3 tensor-valued random fields is given. With a group-theoretic foundation, correlation functions and their spectral counterparts are obtained in terms of stochastic integrals with respect to certain random measures for the fields that belong to orthotropic, tetragonal, and cubic crystal systems.



The target audience will primarily comprise researchers and graduate students in theoretical mechanics, statistical physics, and probability.