1.

Record Nr.

UNINA9910964094003321

Autore

Risken Hannes

Titolo

The Fokker-Planck Equation : Methods of Solution and Applications / / by Hannes Risken, Till Frank

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1996

ISBN

3-642-61544-9

Edizione

[2nd ed. 1996.]

Descrizione fisica

1 online resource (XIV, 472 p. 3 illus.)

Collana

Springer Series in Synergetics, , 2198-333X ; ; 18

Classificazione

58G32

60J65

Disciplina

530.1/3

Soggetti

Probabilities

Physics

System theory

Mathematical physics

Mathematics

Probability Theory

Applied and Technical Physics

Complex Systems

Mathematical Methods in Physics

Applications of Mathematics

Theoretical, Mathematical and Computational Physics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

1. Introduction -- 1.1 Brownian Motion -- 1.2 Fokker-Planck Equation -- 1.3 Boltzmann Equation -- 1.4 Master Equation -- 2. Probability Theory -- 2.1 Random Variable and Probability Density -- 2.2 Characteristic Function and Cumulants -- 2.3 Generalization to Several Random Variables -- 2.4 Time-Dependent Random Variables -- 2.5 Several Time-Dependent Random Variables -- 3. Langevin Equations -- 3.1 Langevin Equation for Brownian Motion -- 3.2 Ornstein-Uhlenbeck Process -- 3.3 Nonlinear Langevin Equation, One Variable -- 3.4 Nonlinear Langevin Equations, Several Variables -- 3.5 Markov Property -- 3.6 Solutions of the Langevin Equation by Computer Simulation -- 4.



Fokker-Planck Equation -- 4.1 Kramers-Moyal Forward Expansion -- 4.2 Kramers-Moyal Backward Expansion -- 4.3 Pawula Theorem -- 4.4 Fokker-Planck Equation for One Variable -- 4.5 Generation and Recombination Processes -- 4.6 Application of Truncated Kramers-Moyal Expansions -- 4.7 Fokker-Planck Equation for N Variables -- 4.8 Examples for Fokker-Planck Equations with Several Variables -- 4.9 Transformation of Variables -- 4.10 Covariant Form of the Fokker-Planck Equation -- 5. Fokker-Planck Equation for One Variable; Methods of Solution -- 5.1 Normalization -- 5.2 Stationary Solution -- 5.3 Ornstein-Uhlenbeck Process -- 5.4 Eigenfunction Expansion -- 5.5 Examples -- 5.6 Jump Conditions -- 5.7 A Bistable Model Potential -- 5.8 Eigenfunctions and Eigenvalues of Inverted Potentials -- 5.9 Approximate and Numerical Methods for Determining Eigenvalues and Eigenfunctions -- 5.10 Diffusion Over a Barrier -- 6. Fokker-Planck Equation for Several Variables; Methods of Solution -- 6.1 Approach of the Solutions to a Limit Solution -- 6.2 Expansion into a Biorthogonal Set -- 6.3 Transformation of the Fokker-Planck Operator, Eigenfunction Expansions -- 6.4 Detailed Balance -- 6.5 Ornstein-Uhlenbeck Process -- 6.6 Further Methods for Solving the Fokker-Planck Equation -- 7. Linear Response and Correlation Functions -- 7.1 Linear Response Function -- 7.2 Correlation Functions -- 7.3 Susceptibility -- 8. Reduction of the Number of Variables -- 8.1 First-Passage Time Problems -- 8.2 Drift and Diffusion Coefficients Independent of Some Variables -- 8.3 Adiabatic Elimination of Fast Variables -- 9. Solutions of Tridiagonal Recurrence Relations, Application to Ordinary and Partial Differential Equations -- 9.1 Applications and Forms of Tridiagonal Recurrence Relations -- 9.2 Solutions of Scalar Recurrence Relations -- 9.3 Solutions of Vector Recurrence Relations -- 9.4 Ordinary and Partial Differential Equations with Multiplicative Harmonic Time-Dependent Parameters -- 9.5 Methods for Calculating Continued Fractions -- 10. Solutions of the Kramers Equation -- 10.1 Forms of the Kramers Equation -- 10.2 Solutions for a Linear Force -- 10.3 Matrix Continued-Fraction Solutions of the Kramers Equation -- 10.4 Inverse Friction Expansion -- 11. Brownian Motion in Periodic Potentials -- 11.1 Applications -- 11.2 Normalization of the Langevin and Fokker-Planck Equations -- 11.3 High-Friction Limit -- 11.4 Low-Friction Limit -- 11.5 Stationary Solutions for Arbitrary Friction -- 11.6 Bistability between Running and Locked Solution -- 11.7 Instationary Solutions -- 11.8 Susceptibilities -- 11.9 Eigenvalues and Eigenfunctions -- 12. Statistical Properties of Laser Light -- 12.1 Semiclassical Laser Equations -- 12.2 Stationary Solution and Its Expectation Values -- 12.3 Expansion in Eigenmodes -- 12.4 Expansion into a Complete Set; Solution by Matrix Continued Fractions -- 12.5 Transient Solution -- 12.6 Photoelectron Counting Distribution -- Appendices -- A1 Stochastic Differential Equations with Colored Gaussian Noise -- A2 Boltzmann Equation with BGK and SW Collision Operators -- A3 Evaluation of a Matrix Continued Fraction for the Harmonic Oscillator -- A4 Damped Quantum-Mechanical Harmonic Oscillator -- A5 Alternative Derivation of the Fokker-Planck Equation -- A6 Fluctuating Control Parameter -- S. Supplement to the Second Edition -- S.1 Solutions of the Fokker-Planck Equation by Computer Simulation (Sect. 3.6) -- S.2 Kramers-Moyal Expansion (Sect. 4.6) -- S.3 Example for the Covariant Form of the Fokker-Planck Equation (Sect. 4.10) -- S.4 Connection to Supersymmetry and Exact Solutions of the One Variable Fokker-Planck Equation (Chap. 5) -- S.5 Nondifferentiability of the Potential for the Weak Noise Expansion (Sects. 6.6 and 6.7) -- S.6 Further Applications of Matrix Continued-Fractions (Chap. 9) -- S.7 Brownian Motion in a Double-Well Potential



(Chaps. 10 and 11) -- S.8 Boundary Layer Theory (Sect. 11.4) -- S.9 Calculation of Correlation Times (Sect. 7.12) -- S.10 Colored Noise (Appendix A1) -- S.11 Fokker-Planck Equation with a Non-Positive-Definite Diffusion Matrix and Fokker-Planck Equation with Additional Third-Order-Derivative Terms -- References.

Sommario/riassunto

This book deals with the derivation of the Fokker-Planck equation, methods of solving it and some of its applications. Various methods such as the simulation method, the eigenfunction expansion, numerical integration, the variational method, and the matrix continued-fraction method are discussed. This is the first time that this last method, which is very effective in dealing with simple Fokker-Planck equations having two variables, appears in a textbook. The methods of solution are applied to the statistics of a simple laser model and to Brownian motion in potentials. Such Brownian motion is important in solid-state physics, chemical physics and electric circuit theory. This new study edition is meant as a text for graduate students in physics, chemical physics, and electrical engineering.

2.

Record Nr.

UNISANNIOMIL0718871

Autore

Wheeler, Alina

Titolo

Designing brand identity : a complete guide to creating, building, and maintaining strong brands / Alina Wheeler

Pubbl/distr/stampa

Hoboken (NJ), : Wiley, c2003

ISBN

0471213268

Descrizione fisica

V, 229 p. : ill. ; 28 cm.

Disciplina

658.8

Soggetti

Marchi di fabbrica e di commercio

Collocazione

POZZO LIB.ECON MON                1692

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia