1.

Record Nr.

UNINA9910261132703321

Autore

Steiner Silvan

Titolo

Understanding the Successful Coordination of Team Behavior

Pubbl/distr/stampa

Frontiers Media SA, 2017

Descrizione fisica

1 online resource (136 p.)

Collana

Frontiers Research Topics

Soggetti

Psychology

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Sommario/riassunto

In many areas of human life, people perform in teams. These teams' performances depend, at least partly, on team members' abilities to coordinate their contributions effectively. This includes the making of decisions and the regulation of behavior in reference to the framework provided by the social group- and task-context. Given the high relevance of a deepened and integrated understanding about the mechanisms underlying coordinated team behavior, the aim of this research topic is to provide a platform for different theoretical and methodological approaches to researching and understanding coordinated team behavior in different task contexts. The articles published in this edition offer a multifaceted insight into current work on the topic.



2.

Record Nr.

UNISALENTO991004402927907536

Autore

Lattimore, Tor

Titolo

Bandit algorithms / Tor Lattimore, Csaba Szepesvári

Pubbl/distr/stampa

Cambridge ; New York, NY : Cambridge University Press, 2020

ISBN

9781108486828

Descrizione fisica

xviii, 518 p. : ill. ; 26 cm

Classificazione

AMS 68Q-xx

LC QA402

Altri autori (Persone)

Szepesvári, Csabaauthor

Disciplina

518.1

Soggetti

Resource allocation - Mathematical models

Decision making - Mathematical models

Algorithms

Probabilities

Mathematical optimization

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references (p. [484]-511) and index

Sommario/riassunto

Decision-making in the face of uncertainty is a challenge in machine learning, and the multi-armed bandit model is a common framework to address it. This comprehensive introduction is an excellent reference for established researchers and a resource for graduate students interested in exploring stochastic, adversarial and Bayesian frameworks