| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISALENTO991004379636507536 |
|
|
Titolo |
Moravia : la vita e le opere in un volume di Raffaele Manica : le immagini e la voce del poeta in una videocassetta di Rai Educational |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
[Torino] : Einaudi tascabili : Rai educational, [2004] |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 contenitore (1 volume, 1 videocassetta) ; 21 x 13 x 5 cm |
|
|
|
|
|
|
Collana |
|
I grandi autori del '900 |
Einaudi tascabili ; 1291 |
|
|
|
|
|
|
|
|
Altri autori (Persone) |
|
Manica, Raffaele |
Moravia, Alberto |
Zechini, Antonella |
Orlandini, Maria Paola |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Moravia, Alberto |
Moravia, Alberto |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
|
|
|
|
|
Nota di contenuto |
|
Moravia / Raffaele Manica. - Torino : Einaudi, [2004]. - 148 p. ; 20 cm. |
Moravia racconta Moravia / a cura di Raffaele Manica e Maria Paola Orlandini ; regia di Antonella Zechini. - [Torino] : Einaudi tascabili : Rai educational, [2004]. - 1 videocassetta (VHS) (49 min.) : color., son. ; 19 cm. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910300425703321 |
|
|
Autore |
Wall Michael L |
|
|
Titolo |
Quantum Many-Body Physics of Ultracold Molecules in Optical Lattices : Models and Simulation Methods / / by Michael L. Wall |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2015.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (391 p.) |
|
|
|
|
|
|
Collana |
|
Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5053 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Phase transformations (Statistical physics) |
Condensed matter |
Physics |
Atoms |
Quantum Gases and Condensates |
Numerical and Computational Physics, Simulation |
Atoms and Molecules in Strong Fields, Laser Matter Interaction |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Part I: Introduction -- General Introduction -- Models for Strongly Correlated Lattice Physics -- Part II: The Molecular Hubbard Hamiltonian -- Emergent Timescales in Entangled Quantum Dynamics of Ultracold Molecules in Optical Lattices -- Hyperfine Molecular Hubbard Hamiltonian -- Part III: The Fermi Resonance Hamiltonian -- Microscopic Model for Feshbach Interacting Fermions in an Optical Lattice with Arbitrary Scattering Length and Resonance Width -- Part IV: Matrix Product States -- Matrix Product States: Foundations -- Out-of-Equilibrium Dynamics with Matrix Product States -- The Infinite Size Variational Matrix Product State Algorithm -- Finite Temperature Matrix Product State Algorithms and Applications -- Part V: Open Source Code and Educational Materials -- Open Source Code Development -- Educational Materials -- Part VI: Conclusions and Appendices -- Conclusions and Suggestions for Future Research -- Appendix A: Documentation for ALPS V2.0 TEBD Code -- Appendix B: Educational |
|
|
|
|
|
|
|
|
|
|
|
Materials: A Gentle Introduction to Time Evolving Block Decimation (TEBD) -- Appendix C: Educational Materials: Introduction to MPS Algorithms. |
|
|
|
|
|
|
Sommario/riassunto |
|
This thesis investigates ultracold molecules as a resource for novel quantum many-body physics, in particular by utilizing their rich internal structure and strong, long-range dipole-dipole interactions. In addition, numerical methods based on matrix product states are analyzed in detail, and general algorithms for investigating the static and dynamic properties of essentially arbitrary one-dimensional quantum many-body systems are put forth. Finally, this thesis covers open-source implementations of matrix product state algorithms, as well as educational material designed to aid in the use of understanding such methods. |
|
|
|
|
|
|
|
| |