| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISALENTO991004378237607536 |
|
|
Autore |
Fleishman, Lazar |
|
|
Titolo |
Boris Pasternak / Lazar Fleishman |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Bologna : Il mulino, 1993 |
|
|
|
|
|
|
|
Titolo uniforme |
Boris Pasternak 1111931 |
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
Le occasioni (Il mulino) ; 52 |
Le occasioni / [Il mulino] ; 52 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Pasternak, Boris Leonidovǐc Biografie |
Pasternak, Boris Leonidovǐc Biografie |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910975314903321 |
|
|
Autore |
Khachidze Tamar T |
|
|
Titolo |
Dynamical symmetry of the Kepler-Coulomb problem in classical and quantum mechanics : non-relativistic and relativistic / / Tamar T. Khachidze and Anzor A. Khelashvili |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New York, : Nova Science Publishers, c2008 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (168 p.) |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Symmetry (Physics) |
Mechanics |
Quantum theory |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. [129]-143) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Intro -- DYNAMICAL SYMMETRY OF THEKEPLER-COULOMB PROBLEM INCLASSICAL AND QUANTUMMECHANICS: NON-RELATIVISTICAND RELATIVISTIC -- CONTENTS -- ABOUT THE AUTHORS -- PREFACE -- INTRODUCTION -- THE GENERAL CONCEPTS OF DYNAMICAL SYMMETRIES -- REFERENCES -- HIDDEN (DYNAMICAL) SYMMETRIES IN CLASSICALMECHANICS -- I.1. CONSTANTS OF MOTION AS GENERATORS OF INFINITESIMALTRANSFORMATIONS -- Remark -- I.2. DERIVATION OF LRL VECTOR -- I.3. APPLICATIONS OF LRL VECTOR IN CLASSICAL PHYSICS -- (I) LRL Vector and the Orbit Equation -- (II). Algebraic Aspects of the Kepler Problem -- I.4. DYNAMICAL SYMMETRY FOR THE ISOTROPICHARMONIC OSCILLATOR -- I.5. POSSIBLE GENERALIZATIONS OF DYNAMICAL SYMMETRIES -- Comments -- I.6. APPLICATION OF THE DYNAMICAL EVOLUTION OF LRLVECTOR IN GENERAL CENTRAL CASE [12] -- Equations of Motion for General Central Forces -- Equations of Motion for Arbitrary Forces -- Summary Comments on Dynamical Symmetries in Classical(Non-Relativistic) Mechanics -- REFERENCES -- HIDDEN SYMMETRY IN CLASSICAL RELATIVISTICMECHANICS -- II.1. AUXILIARY PROBLEM: LRL VECTOR FOR A MODIFIEDKEPLER PROBLEM -- II.2. THE LAPLACE-RUNGE-LENZ VECTOR AND THE LORENTZBOOST -- II.3. POST-NEWTONIAN EXTENSIONS OF THE LRL VECTOR -- II.4. RELATIVISTIC KEPLER PROBLEM -- REFERENCES -- DYNAMICAL |
|
|
|
|
|
|
|
|
|
|
|
SYMMETRIES IN NON-RELATIVISTICQUANTUM MECHANICS -- III.1. THE HYDROGEN ATOM (GENERAL CONSIDERATION) -- Algebraic Aspects of the Hydrogen Problem [2] -- III.2. THE HYDROGEN ATOM IN THE MOMENTUM -- Representation -- Example of Application of The Momentum Representation:Dynamical Symmetry of a Three Dimensional Wick-Cutkosky Problem [7] -- III. 3. THE HYDROGEN ATOM AND THE LORENTZ GROUP -- III. 4. THREE DIMENSIONAL ISOTROPIC HARMONIC OSCILLATORAND SU(3) [14] -- REFERENCES -- A NEW KIND OF DYNAMICAL SYMMETRY -SUPERSYMMETRY -- IV.1 SUPERSYMMETRIC QUANTUM MECHANICS. |
IV.2. SUPERSYMMETRY AND THE RADIAL PROBLEM -- IV. 3. EXACT SUPERSYMMETRY IN THE NON-RELATIVISTICHYDROGEN ATOM -- REFERENCES -- RELATIVISTIC QUANTUM MECHANICS -- V.1. SUPERSYMMETRY IN THE DIRAC EQUATION FOR THECOULOMB POTENTIAL -- APPENDIX: SHAPE INVARIANCE (SI) -- V. 2. AN "ACCIDENTAL SYMMETRY" OPERATORFOR THE DIRAC EQUATION IN THE COULOMB POTENTIAL -FROM PAULI TO DIRAC -- V. 3. PHYSICAL MEANING AND SOME APPLICATIONSOF JOHNSON - LIPPMANN OPERATOR -- APPENDIX: CALCULATION OF RELEVANT COMMUTATORS -- REFERENCES -- GENERALIZATIONS TO THE RELATIVISTIC DIRACHAMILTONIAN -- VI.1. SUPERSYMMETRY OF THE DIRAC HAMILTONIANFOR GENERAL CENTRAL POTENTIALS -- VI.2. WHERE IS THE HARMONIC OSCILLATOR? -- VI.3. RELATIVISTIC QUANTUM MECHANICSOF DIRAC OSCILLATOR -- VI.4. THE LORENTZ - SCALAR POTENTIALIN THE DIRAC EQUATION -- VI.5. ALGEBRAIC DERIVATION OF THE SPECTRUM OF THEDIRAC HAMILTONIAN FOR AN ARBITRARY COMBINATIONOF THE LORENTZ-SCALAR AND LORENTZ-VECTOR COULOMBPOTENTIAL -- Comments -- REFERENCES -- SOME RECENT DEVELOPMENTS -- VII.1 HIDDEN SUPERSYMMETRY OF THE DIRAC-COULOMBPROBLEM AND THE BIEDENHARN APPOACH -- VII.2 SOME PRACTICAL GENERALIZATIONS: THE LRL VECTOR INTHE PRESENCE OF AN ELECTRIC FIELD [9] -- CONCLUSIONS -- REFERENCES -- BIBLIOGRAPHY (PART I) -- PART II -- INDEX. |
|
|
|
|
|
|
Sommario/riassunto |
|
The purpose of this book is to develop a systematic theory for the hidden symmetry generators, which are simultaneously the odd generators of superalgebra in relativistic quantum mechanics. It is devoted to the description of so-called hidden symmetry of the Kepler problem in classical and quantum mechanics. |
|
|
|
|
|
|
|
| |