| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISALENTO991004334038107536 |
|
|
Titolo |
I pittori italiani in Egitto (1920-1960) : atti della mostra - conferenza organizzate il 16 dicembre 2004 con il patrocinio del Ministero per gli Italiani nel mondo presso l'Accademia d'Egitto / Associazione italiani d'Egitto |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
Descrizione fisica |
|
84 p., [17 c. di tav.] : ill. ; 24 cm |
|
|
|
|
|
|
Altri autori (Enti) |
|
Accademia d'Egitto |
Associazione Italiani d'Egittoauthor |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Pittura - Egitto - Esposizioni |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
In testa al frontespizio : AIDE, Associazione Italiani d'Egitto |
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910349334503321 |
|
|
Autore |
Shirali Satish |
|
|
Titolo |
Measure and Integration / / by Satish Shirali, Harkrishan Lal Vasudeva |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed. 2019.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XII, 598 p.) |
|
|
|
|
|
|
Collana |
|
Springer Undergraduate Mathematics Series, , 1615-2085 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Measure theory |
Functions of real variables |
Fourier analysis |
Functional analysis |
Measure and Integration |
Real Functions |
Fourier Analysis |
Functional Analysis |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
1 Preliminaries -- 2 Measure in Euclidean Space -- 3 Measure Spaces and Integration -- 4 Fourier Series -- 5 Differentiation -- 6 Lebesgue Spaces and Modes of Convergence -- 7 Product Measure and Completion -- 8 Hints -- References -- Index. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This textbook provides a thorough introduction to measure and integration theory, fundamental topics of advanced mathematical analysis. Proceeding at a leisurely, student-friendly pace, the authors begin by recalling elementary notions of real analysis before proceeding to measure theory and Lebesgue integration. Further chapters cover Fourier series, differentiation, modes of convergence, and product measures. Noteworthy topics discussed in the text include Lp spaces, the Radon–Nikodým Theorem, signed measures, the Riesz Representation Theorem, and the Tonelli and Fubini Theorems. This textbook, based on extensive teaching experience, is written for senior |
|
|
|
|
|
|
|
|
|
|
undergraduate and beginning graduate students in mathematics. With each topic carefully motivated and hints to more than 300 exercises, it is the ideal companion for self-study or use alongside lecture courses. |
|
|
|
|
|
| |