1.

Record Nr.

UNISALENTO991004206559707536

Titolo

Images et mythes d'Haïti : El reino de este mundo, Alejo Carpentier, La tragédie du roi Christophe, Aimé Cesaire, Îles de tempête, Bernard Dadié / [rédigés par Daniel-Henri Pageaux]

Pubbl/distr/stampa

Paris : L'Harmattan, 1984

Descrizione fisica

237 p. ; 21 cm

Collana

Récifs

Altri autori (Persone)

Pageaux, Daniel Henriauthor

Disciplina

843.909

Soggetti

Haiti nella letteratura

Césaire, Aimé. Tragédie du roi Christophe

Dadié, Bernard Binlin. Îles de tempête

Carpentier, Alejo. Reino de este mundo

Césaire, Aimé. Tragédie du roi Christophe

Dadié, Bernard Binlin. Îles de tempête

Carpentier, Alejo. Reino de este mundo

Lingua di pubblicazione

Francese

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910438149003321

Autore

Mitrea Irina

Titolo

Multi-Layer Potentials and Boundary Problems : for Higher-Order Elliptic Systems in Lipschitz Domains / / by Irina Mitrea, Marius Mitrea

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013

ISBN

3-642-32666-8

Edizione

[1st ed. 2013.]

Descrizione fisica

1 online resource (X, 424 p.)

Collana

Lecture Notes in Mathematics, , 1617-9692 ; ; 2063

Disciplina

515.35

Soggetti

Potential theory (Mathematics)

Differential equations

Integral equations

Fourier analysis

Potential Theory

Differential Equations

Integral Equations

Fourier Analysis

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references (pages 405-410) and indexes.

Nota di contenuto

1 Introduction -- 2 Smoothness scales and Caldeón-Zygmund theory in the scalar-valued case -- 3 Function spaces of Whitney arrays -- 4 The double multi-layer potential operator -- 5 The single multi-layer potential operator -- 6 Functional analytic properties of multi-layer potentials and boundary value problems.

Sommario/riassunto

Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Calderón, one of the



founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach. This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in Whitney–Lebesque spaces, Whitney–Besov spaces, Whitney–Sobolev- based Lebesgue spaces, Whitney–Triebel–Lizorkin spaces,Whitney–Sobolev-based Hardy spaces, Whitney–BMO and Whitney–VMO spaces.