1.

Record Nr.

UNISALENTO991003976549707536

Titolo

Gli assi portanti / [progetto culturale dell'Associazione Alfredo Guida amici del libro, Onlus]

Pubbl/distr/stampa

Napoli : Guida, 2011

ISBN

9788860428769 (v. 1)

9788866660309 (v. 2)

9788866660286 (v. 3)

9788860428929 (v. 4)

9788866660361 (v. 5)

9788866660354 (v. 6)

9788860428776 (v. 7)

9788860429018 (v. 8)

9788860428783 (v. 9)

Descrizione fisica

9 v. ; 21 cm

Altri autori (Persone)

Laforgia, Domenico

Trevisi, Antonio Salvatore

Denitto, Anna Lucia

Pasimeni, Carmelo

Mossa, Michele

Trisorio Liuzzi, Giuliana

Agrimi, Adriana

Fratoianni, Nicola

Pierucci, Ines

Forges Davanzati, Guglielmo

Ricciardelli, Antonio

Pontrandolfo, Pierpaolo

Dangelico, Rosa Maria

Altri autori (Enti)

Associazione Alfredo Guida amici del libro

Disciplina

338.94575

Soggetti

Puglia Imprese Competitività

Lingua di pubblicazione

Non definito

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

In custodia

Tit. della custodia



Nota di contenuto

1: Energia / Domenico Laforgia, Antonio Salvatore Trevisi. - 244 p.

2: Acqua / Anna Lucia Denitto. - 172 p.

3: Trasporti / Carmelo Pasimeni. - 149 p.

4: Mare / Michele Mossa. - 146 p.

5: Ricerca e innovazione / Giuliana Trisorio Liuzzi, Adriana Agrimi. - 140 p.

6: I giovani / Nicola Fratoianni, Ines Pierucci. - 72 p.

7: Efficienza burocratica / Guglielmo Forges Davanzati, Antonella Ricciardelli. - 130 p.

8: Ambiente / Pierpaolo Pontrandolfo, Rosa Maria Dangelico. - 178 p.

[9]: Competitività territoriale : la Puglia. - 224 p.

2.

Record Nr.

UNINA9910299585903321

Autore

Zohdi Tarek I

Titolo

A Finite Element Primer for Beginners : The Basics / / by Tarek I. Zohdi

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018

ISBN

3-319-70428-1

Edizione

[2nd ed. 2018.]

Descrizione fisica

1 online resource (XIII, 135 p. 41 illus.)

Disciplina

620.00151535

Soggetti

Mechanics

Mechanics, Applied

Computer science - Mathematics

Computational complexity

Physics

Fluid mechanics

Mathematical models

Solid Mechanics

Computational Science and Engineering

Complexity

Numerical and Computational Physics, Simulation

Engineering Fluid Dynamics

Mathematical Modeling and Industrial Mathematics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



Nota di contenuto

Intro -- Preface -- Contents -- List of Figures -- 1 Weighted Residuals and Galerkin's Method for a Generic 1D Problem -- 1.1 Introduction: Weighted Residual Methods -- 1.2 Galerkin's Method -- 1.3 An Overall Framework -- 2 A Model Problem: 1D Elastostatics -- 2.1 Introduction: A Model Problem -- 2.2 Weak Formulations in One Dimension -- 2.3 An Example -- 2.4 Some Restrictions -- 2.5 Remarks on Nonlinear Problems -- 3 A Finite Element Implementation in One Dimension -- 3.1 Introduction -- 3.2 Weak Formulation -- 3.3 FEM Approximation -- 3.4 Construction of FEM Basis Functions -- 3.5 Integration and Gaussian Quadrature -- 3.5.1 An Example -- 3.6 Global/Local Transformations -- 3.7 Differential Properties of Shape Functions -- 3.8 Post-Processing -- 3.9 A Detailed Example -- 3.9.1 Weak Form -- 3.9.2 Formation of the Discrete System -- 3.9.3 Applying Boundary Conditions -- 3.9.4 Massive Data Storage Reduction -- 3.10 Quadratic Elements -- 4 Accuracy of the Finite Element Method in One Dimension -- 4.1 Introduction -- 4.2 The ``Best Approximation'' Theorem -- 4.3 The Principle of Minimum Potential Energy -- 4.4 Simple Estimates for Adequate FEM Meshes -- 4.5 Local Mesh Refinement -- 5 Iterative Solutions Schemes -- 5.1 Introduction: Minimum Principles and Krylov Methods -- 5.1.1 Numerical Linear Algebra -- 5.1.2 Krylov Searches and Minimum Principles -- 6 Weak Formulations in Three Dimensions -- 6.1 Introduction -- 6.2 Hilbertian Sobolev Spaces -- 6.3 The Principle of Minimum Potential Energy -- 6.4 Complementary Principles -- 7 A Finite Element Implementation  in Three Dimensions -- 7.1 Introduction -- 7.2 FEM Approximation -- 7.3 Global/Local Transformations -- 7.4 Mesh Generation and Connectivity Functions -- 7.5 Warning: Restrictions on Elements -- 7.5.1 Good and Bad Elements: Examples -- 7.6 Three-Dimensional Shape Functions.

7.7 Differential Properties of Shape Functions -- 7.8 Differentiation in the Referential Coordinates -- 7.8.1 Implementation Issues -- 7.8.2 An Example of the Storage Scaling -- 7.9 Surface Jacobians and Nanson's Formula -- 7.10 Post-Processing -- 8 Accuracy of the Finite Element Method in Three Dimensions -- 8.1 Introduction -- 8.2 The ``Best Approximation'' Theorem -- 8.3 Simple Estimates for Adequate FEM Meshes Revisited for Three Dimensions -- 8.4 Local Error Estimation and Adaptive Mesh Refinement -- 8.4.1 A Posteriori Recovery Methods -- 8.4.2 A Posteriori Residual Methods -- 9 Time-Dependent Problems -- 9.1 Introduction -- 9.2 Generic Time Stepping -- 9.3 Application to the Continuum Formulation -- 10 Summary and Advanced Topics -- Appendix A  Elementary Mathematical Concepts -- A.1 Vector Products -- A.2 Vector Calculus -- A.3 Interpretation of the Gradient of Functionals -- A.4 Matrix Manipulations -- A.4.1 Determinant -- A.4.2 Eigenvalues -- A.4.3 Coordinate Transformations -- Appendix B  Basic Continuum Mechanics -- B.1 Deformations -- B.2 Equilibrium/Kinetics of Solid Continua -- B.2.1 Postulates on Volume and Surface Quantities -- B.2.2 Balance Law Formulations -- B.3 Referential Descriptions of Balance Laws and Nanson's Formula -- B.4 The First Law of Thermodynamics/An Energy Balance -- B.5 Linearly Elastic Constitutive Equations -- B.5.1 The Infinitesimal Strain Case -- B.5.2 Linear Elastic Constitutive Laws -- B.5.3 Material Component Interpretation -- B.6 Related Physical Concepts -- B.6.1 Heat Conduction -- B.6.2 Solid-State Diffusion-Reaction -- B.6.3 Conservation Law Families -- Appendix C  Convergence of Recursive Iterative Schemes -- Appendix D  Selected in-Class Exam Problems -- D.1 Sample Problem 1 -- D.2 Sample Problem 2 -- D.3 Sample Problem 3 -- D.4 Sample Problem 4 -- D.5 Sample Problem 5 -- D.6 Sample Problem 6.

D.7 Sample Problem 7 -- D.8 Sample Problem 8 -- D.9 Sample Problem 9 -- D.10 Sample Problem 10 -- D.11 Sample Problem 11 -- D.12



Sample Problem 12 -- D.13 Sample Problem 13 -- D.14 Sample Problem 14 -- D.15 Sample Problem 15 -- D.16 Sample Problem 16 -- D.17 Sample Problem 17 -- Appendix E  Selected Computer Projects -- E.1 Assignment Format -- E.2 Sample Project 1:  The Basics of FEM -- E.3 Sample Project 2:  Higher-Order Elements -- E.4 Sample Project 3: Potential and Efficient Solution Techniques -- E.5 Sample Project 4: Error Estimation and Adaptive Meshing Using the Exact Solution as a Test -- E.6 Sample Project 5: 3D Formulations for Elasticity -- E.7 Sample Project 6: Implementation of the Finite Element Method in 2D -- E.8 Sample Project 7: Time-Dependent Problems.

Sommario/riassunto

 The purpose of this primer is to provide the basics of the Finite Element Method, primarily illustrated through a classical model problem, linearized elasticity. The topics covered are:   •  Weighted residual methods and Galerkin approximations, •  A model problem for one-dimensional linear elastostatics, •  Weak formulations in one dimension, •  Minimum principles in one dimension, •  Error estimation in one dimension, •  Construction of Finite Element basis functions in one dimension, •  Gaussian Quadrature, •  Iterative solvers and element by element data structures, •  A model problem for three-dimensional linear elastostatics, •  Weak formulations in three dimensions, •  Basic rules for element construction in three-dimensions, •  Assembly of the system and solution schemes, •  An introduction to time-dependent problems and •  An introduction to rapid computation based on domain decomposition    and basic parallel processing.   The approach is to introduce the basic concepts first in one-dimension, then move on to three-dimensions. A relatively informal style is adopted. This primer is intended to be a “starting point”, which can be later augmented by the large array of rigorous, detailed, books in the area of Finite Element analysis. In addition to overall improvements to the first edition, this second edition also adds several carefully selected in-class exam problems from exams given over the last 15 years at UC Berkeley,  as well as a large number of take-home computer projects. These problems and projects are designed to be aligned to the theory provided in the main text of this primer. .