1.

Record Nr.

UNISALENTO991003336649707536

Titolo

The Cambridge companion to Xenophon / edited by Michael A. Flower

ISBN

9781107652156

Descrizione fisica

XX, 520 p. ; 23 cm.

Collana

Cambridge companions to literature

Altri autori (Persone)

Flower, Michael A.

Disciplina

938

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Contiene riferimenti bibliografici. Indice

2.

Record Nr.

UNINA9910960262303321

Titolo

Biomass gasification : chemistry, processes, and applications / / Jean-Pierre Badeau and Albrecht Levi, editors

Pubbl/distr/stampa

Hauppauge, N.Y., : Nova Science Publishers, c2009

ISBN

1-61122-683-X

Edizione

[1st ed.]

Descrizione fisica

1 online resource (490 p.)

Collana

Renewable energy. Research, development and policies series

Altri autori (Persone)

BadeauJean-Pierre

LeviAlbrecht

Disciplina

665.7/76

Soggetti

Biomass gasification

Chemistry, Technical

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Intro -- BIOMASS GASIFICATION: CHEMISTRY, PROCESSES AND APPLICATIONS -- BIOMASS GASIFICATION: CHEMISTRY, PROCESSES AND APPLICATIONS -- CONTENTS -- PREFACE -- A GLOBAL PERSPECTIVE ON



BIOMASS GASIFICATION -- ABSTRACT -- INTRODUCTION: PRESENT AND FUTURE FOR BIOMASS FUELS -- THE PROSPECTS FOR BIOMASS GASIFICATION -- DISCUSSION -- ACKNOWLEDGMENTS -- REFERENCES -- INNOVATION ON BIOMASS WASTES UTILIZATION THROUGH GASIFICATION AND CO-GASIFICATION. STAGE OF DEPLOYMENT AND NEEDS FOR FURTHER R&amp -- D -- ABSTRACT -- 1. INTRODUCTION -- 2. BIOMASS GASIFICATION FUNDAMENTALS AND MAIN REACTIONS -- 3. EFFECT OF BIOMASS WASTES CHARACTERISTICS ON FUEL  GAS COMPOSITION -- 3.1. Effect on Hydrocarbons Content -- 3.2. Effect on Ammonia Formation -- 3.3. Effect on Sulfides Formation -- 3.4. Effect on Chlorides Formation -- 4. EFFECT OF EXPERIMENTAL CONDITIONS ON GASIFICATION GAS COMPONENTS -- 4.1. Effect of Temperature -- 4.2. Effect of Oxygen Flow Rate -- 4.3. Effect of Adding a Catalyst or Sorbent -- 4.3.1. Gas Main Components -- Use of Dolomite as Catalyst -- Use of Olivine as Catalyst -- Use of Other Minerals as Catalysts -- Use of Nickel Based Catalysts -- Use of Other Catalysts -- 4.3.2. NH3  Reduction -- 4.3.3. H2S Removal -- 4.3.4. HCl Destruction -- 5. PROCESSES FOR REDUCING ASH AGGLOMERATION -- 6. HOT SYNGAS CLEANING PROCESSES -- 6.1. Particulates Removal Technologies -- 6.2. Sulfur and Halogens Based Compounds Abatement -- 6.3. Tar Abatement -- 6.4. Other Processes for Improving Syngas Properties -- 7. NEW SYNGAS UTILIZATIONS -- 7.1. Hydrogen Production -- 7.2. Fischer-Tropsch Synthesis -- 7.3. Synthesis of Methanol and Dimethyl Ether -- 7.4. Production of Bio-Based Products from Syngas Fermentation -- 7.5. Production of Heat and Power -- 8. MAIN BIOMASS GASIFICATION BARRIERS AND R&amp -- D NEEDS -- REFERENCES.

WILLOW BIOMASS GASIFICATION  FEASIBILITY STUDY -- ABSTRACT -- 1. INTRODUCTION -- 2. GASIFICATION SYSTEM -- 3. FEEDSTOCK CHARACTERIZATION, PERFORMANCE ANALYSES, AND COST ESTIMATIONS -- 4. FEASIBILITY AND IMPLEMENTATION ISSUES -- 5. CONCLUSION -- REFERENCES -- BIOWASTES-TO-BIOFUELS  ROUTES VIA GASIFICATION -- ABSTRACT -- NOMENCLATURE -- Greek symbols -- Acronyms -- 1. INTRODUCTION -- 1.1. Current Scenario -- 1.2. Biomass and Wastes as Key Renewable Alternatives -- 1.3. Challenges for Biomass Energy Implementation -- 1.4. Aim of the Chapter -- 1.5. Outline of the Chapter -- 2. BIOMASS AS A SUSTAINABLE ENERGY SOURCE -- 2.1. Global Availability and Potential of Biomass -- 2.2. Biomass Supply-Costs -- 2.3. Case study: Biomass from Friesland Province -- 3. GASIFICATION TECHNOLOGY FOR BIOMASS CONVERSION -- 3.1. Gasification Reactions -- 3.2. Types of Gasifiers -- 3.3. Mode of Operation  The syngas compositions as well as -- 3.3.1. Gasifying Medium -- 3.3.2. Heat Transfer -- 3.4. Gasification Modeling in Aspen Plus -- 3.4.1. Syngas Composition -- 3.4.2. Syngas Calorific Value -- 3.4.3. Gasification Efficiency -- 3.4.4. Effect of Temperature and Gasifying Agent -- 3.4.5. Effect of Pressure and Gasifying Agent -- 3.5. State-of-the-Art of Gasification -- 4. TECHNOLOGY SELECTION FOR BIOFUELS PRODUCTION -- 4.1. System Boundaries -- 4.2. Pre-Treatment -- 4.2.1. Reception -- 4.2.2. Storage -- 4.2.3. Conveying Systems -- 4.2.4. Size Reduction -- 4.2.5.Drying -- 4.2.6. Densification -- 4.2.7. Feeding Systems -- 4.3. Cleaning Stages -- 4.4. Heat Recovery -- 4.5. Synthetic Natural Gas (SNG) -- 4.6. Methanol -- 4.7. Fischer-Tropsch -- 4.8. Hydrogen -- 4.9. Heat and Electricity -- 5. BIOFUELS APPLICATION -- 5.1. Electricity Generation -- 5.1.1. Combined Cycles IGCC -- 5.2. Heat and/or Steam Generation -- 5.3. Transport Fuels (Synfuels) -- 5.4. Chemicals.

6. EFFICIENCY EVALUATION OF DIFFERENT BIOFUEL PROCESSES -- 6.1. Mass and Energy Balances -- 6.2. Efficiency -- 6.2.1. Mass Conversion



Yields -- 6.2.2. Efficiency Based on HHV and LHV of Biowastes and Biofuels -- 6.2.3. Overall Energy Efficiency -- 6.2.4. Exergetic Efficiency -- 6.2.4.1. Chemical Exergy -- 6.2.4.2. Physical Exergy -- 6.2.4.3. Total Exergy of a Stream -- 6.2.4.4. Exergetic Efficiency -- 6.2.5. Comparison of Different Efficiency Analysis -- 6.2.5.1. Exergy Losses of a Process (Irreversibilities) -- 7. SUSTAINABILITY EVALUATION -- 7.1. Environmental Impact -- 7.1.1. Biomass-to-SNG Evaluation -- 7.1.2. Biomass-to-Methanol Evaluation -- 7.1.3.Biomass-to-Fischer Tropsch Fuels Evaluation -- 7.1.4. Biomass-to-Hydrogen Evaluation -- 7.1.5. Biomass-to-Electricity Evaluation -- 7.2. Economic Analysis -- 7.3. Unidimensional and Multidimensional Accounting Methods -- CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- AUTO-GASIFICATION OF BIOMASS -- ABSTRACT -- NOMENCLATURE -- 1. INTRODUCTION -- 2. BIOMASS - RELIABLE ENERGY SOURCE? -- 3. BIO-RESIDUES - RELIABLE AND RENEWABLE ENERGY SOURCE! -- 4. AUTO-GASIFICATION - A MYTH OR REAL? -- 5. COMPONENTS OF BIOMASS -- 6. COMPOSITION OF BIOMASS -- 7. UNDERSTANDING OF GASIFICATION -- 8. PLAUSIBLE MECHANISM OF AUTO-GASIFICATION -- 9. VARIABLES AFFECTING AUTO GASIFICATION -- 9.1. Materials and Methods -- 9.2. Environment -- 9.3. Flow of Medium -- 9.4. Size and Shape -- 9.5. Structure -- 9.6. Heating Rates -- 9.7. Temperature -- 9.8. Ash -- 10. KINETICS OF AUTO-GASIFICATION -- 10.1. Development of Method -- 10.2. Demonstration of Model -- CONCLUSIONS -- REFERENCES -- BIOMASS GASIFICATION SYSTEMS INTEGRATED WITH FUEL CELLS AND MICROTURBINES -- ABSTRACT -- NOMENCLATURE -- ABBREVIATIONS -- 1. INTRODUCTION -- 2. DISTRIBUTED GENERATION -- 3. USE OF FOREST RESIDUES -- 4. GASIFICATION -- 4.1. Gasification Process.

4.2. Biomass Gasifier -- 5. FUEL CELLS -- 5.1. Basic Principles -- 5.2. Fuel Cell Electrochemical Model -- 5.3. Biomass and Fuel Cell -- 6. GAS TURBINE -- 6.1. Gas Turbine Model -- 6.2. Gas Turbine Control Configuration -- 6.3. Biomass and Gas Turbine -- 7. FUEL CELL AND GAS TURBINE HYBRID SYSTEM -- 7.1. Configuration of the SOFC-GT Plant -- CONCLUSION -- REFERENCES -- ALLOTHERMAL GASIFICATION:  REVIEW OF RECENT DEVELOPMENTS -- ABSTRACT -- 1. INTRODUCTION -- 2. SYSTEMS BASED ON CIRCULATION OF SOLID HEAT CARRIERS -- 2.1. Battelle/FERCO Gasifier -- 2.2. Fast Internally Circulating Fluidized Bed (FICFB) Gasifier -- 2.3. Staged Gasifier - The Blue Tower -- 2.4. MILENA Gasifier -- 3. SYSTEMS BASED ON HEAT EXCHANGERS -- 3.1. Biomass Heat Pipe Reformer (BioHPR) -- 3.2. PulseEnhanced™ Steam Reforming Technology -- CONCLUSION -- REFERENCES -- MODELLING FIXED-BED BIOMASS GASIFIERS:  A REVIEW -- ABSTRACT -- 1. INTRODUCTION -- 2. GASIFIER CONFIGURATION AND OPERATION -- 3. PROCESSES OCCURRING WITHIN GASIFIERS -- 3.1. Drying -- 3.2. Pyrolysis and Cracking -- 3.3. Combustion -- 3.4. Char reduction -- 4. COMMON MODELLING APPROACHES -- 4.1. Equilibrium vs Kinetic Models -- 4.2. Mass and Energy Balance -- Mass Balance -- Energy Balance -- 4.3. Char Models -- 4.4. Summary of Recent Models -- 5. DISCUSSION -- CONCLUSION -- REFERENCES -- UPGRADING OF A BIOMASS GENERATED GAS WITH COMMERCIAL-LIKE AND HOME-MADE CATALYSTS -- ABSTRACT -- 1. INTRODUCTION -- 2. EXPERIMENTAL -- 2.1. Description of the Catalysts -- 2.2. Characterization -- 2.3. Exposure to Gasifier Output Gas -- 2.4. Catalytic Tests -- 3. RESULTS AND DISCUSSION -- 3.1. Characterization Results of the Ni Based Catalysts -- 3.2. Characterization Results of the Noble Metal Containing Catalysts -- 3.3. Catalytic Performances -- CONCLUSION -- REFERENCES.

THE STUDY ON THE PERFORMANCE OF  "MOBILE OXYGEN" CATALYSTS USED FOR BIOMASS GASIFICATION -- ABSTRACT -- INTRODUCTION --



1. OXYGEN -- 1.1. Reactive Oxygen Species (ROS) -- 1.2. Characteristic of ROS -- 2. "MOBILE OXYGEN" CATALYSTS -- 2.1. Metal "Mobile Oxygen" Catalysts -- 2.1.1. Iron Catalysts -- I. Fe Species as the Active Site in Olivine -- II. Fe-Based Catalysts -- III. Fe Oxide-Based Catalysts -- 2.1.2. Ce, Gd Catalysts -- 2.2. Perovskite Catalysts -- 2.3. Mayenite and Related Catalysts -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- BIOMASS PRODUCTION WITH FAST-GROWING TREES ON AGRICULTURAL LAND IN COOL-TEMPERATE REGIONS: POSSIBILITIES, LIMITATIONS, CHALLENGES -- ABSTRACT -- INTRODUCTION -- DEVELOPMENT OF COMMERCIAL BIOMASS PRODUCTION BASED ON WILLOWS IN SWEDEN -- ENVIRONMENTAL CONCERNS, BIODIVERSITY AND  LANDSCAPE DESIGN -- SYNERGIES AND CONFLICTS OF INTERESTS -- CONCLUSION -- REFERENCES -- PRODUCER GAS AND VEGETABLE OILS OPERATED COMPRESSION IGNITION ENGINES FOR RURAL APPLICATIONS -- ABSTRACT -- 1. INTRODUCTION -- Honge, Rice Bran and Neem Oils -- Biomass Gasification Status in India -- 2. FUELS USED AND THEIR PROPERTIES -- 3. EXPERIMENTAL SETUP -- Experimental Heat Release Estimation -- 4. RESULTS AND DISCUSSION -- 4.1. Single Fuel Operation -- 4.1.1. Crude Honge, Rice Bran and Neem Oil Operation -- 4.1.2. Biodiesel Operation -- Performance Characteristics -- 4.2. Dual Fuel Operation of Vegetable Oils with Producer Gas -- 4.3. Overall Comparison of the Different Modes of Engine Operation -- CONCLUSION -- Transesterification of Non Edible Oils -- Experiments with Methyl Esters of Honge, Rice Bran and Neem Oils -- Experiments with HOME, ROME and NOME and Producer Gas in Dual Operation -- CLOSURE -- REFERENCES -- BIOMASS GASIFIER BASED POWER PROJECTS UNDER CLEAN DEVELOPMENT MECHANISM IN INDIA: A PRELIMINARY ASSESSMENT -- ABSTRACT.

1. INTRODUCTION.

Sommario/riassunto

Biomass gasification means incomplete combustion of biomass resulting in the production of combustible gases consisting of carbon monoxide, hydrogen and methane. This book examines the importance of biomass gasification and assesses the possibility of biomass exploitation as an alternative to conventional fuel.