1.

Record Nr.

UNISALENTO991003275029707536

Titolo

Handbook of differential equations [e-book] / edited by C.M. Dafermos, E. Feireisl

Pubbl/distr/stampa

Amsterdam ; Boston : Elsevier/North Holland, 2002-

ISBN

9780444511317

0444511318

Descrizione fisica

v. : ill. ; 25 cm

Altri autori (Persone)

Dafermos, Constantine M.

Feireisl, Eduard

Altri autori (Enti)

ScienceDirect (Online service)

Disciplina

515.353

Soggetti

Differential equations - Handbooks, manuals, etc

Lingua di pubblicazione

Inglese

Formato

Risorsa elettronica

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and indexes

Nota di contenuto

W. Arendt: Semigroups and evolution equations: Calculus, regularity and Kernel estimates. A. Bressan: The front tracking method for systems of conservation laws. E. Di Benedetto, J. M. Urbano, V. Vespri: Current issues on singular and degenerate evolution equations; ; L. Hsiao, S. Jiang: Nonlinear hyperbolic-parabolic coupled systems. A. Lunardi: Nonlinear parabolic equations and systems. D. Serre: L1-stability of nonlinear waves in scalar conservation laws. B. Perthame: Kinetic formulations of parabolic and hyperbolic PDEs: from theory to numerics

v. 1. Evolutionary equations

Sommario/riassunto

This book contains several introductory texts concerning the main directions in the theory of evolutionary partial differential equations. The main objective is to present clear, rigorous, and in depth surveys on the most important aspects of the present theory. The table of contents includes: W.Arendt: Semigroups and evolution equations: Calculus, regularity and kernel estimates A.Bressan: The front tracking method for systems of conservation laws E.DiBenedetto, J.M.Urbano,V.Vespri: Current issues on singular and degenerate evolution equations; L.Hsiao, S.Jiang: Nonlinear hyperbolic-parabolic coupled systems A.Lunardi: Nonlinear parabolic equations and systems D.Serre:L1-stability of nonlinear waves in scalar conservation laws B.Perthame:Kinetic



formulations of parabolic and hyperbolic PDEs: from theory to numerics.