1.

Record Nr.

UNINA9910508462503321

Titolo

From operator theory to orthogonal polynomials, combinatorics, and number theory : a volume in honor of Lance Littlejohn's 70th birthday / / Fritz Gesztesy, Andrei Martinez-Finkelshtein, editors

Pubbl/distr/stampa

Cham, Switzerland : , : Birkhäuser, , [2021]

©2021

ISBN

3-030-75425-1

Descrizione fisica

1 online resource (388 pages)

Collana

Operator theory, advances and applications ; ; Volume 285

Disciplina

515.724

Soggetti

Operator theory

Spectral theory (Mathematics)

Teoria espectral (Matemàtica)

Teoria d'operadors

Homenatges

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Intro -- Preface -- References -- Contents -- Compositions and Chebyshev Polynomials -- 1 Introduction -- 2 Proof of Theorem 1 -- 3 Proof of Theorem 2 -- 4 Proof of Theorem 3 -- 5 Proofs of Theorems 4 and Corollary 1 -- 6 Proof of Theorem 6 and Corollaries -- 7 Further Topics -- References -- Non-negative Extensions of Hamiltonian Systems -- 1 Introduction -- 2 Preliminaries -- 3 The Friedrichs Extension TF of T0 -- 4 Characterisation of Non-negative Extensions TB -- 5 Example: A Fourth Order ODE -- References -- On Simon's Hausdorff Dimension Conjecture -- 1 Introduction -- 2 A Weak Version of Simon's Hausdorff Dimension Conjecture -- 2.1 A Basic Estimate -- 2.2 Prüfer Variables -- 2.3 Unboundedness and Infinite Energy -- 2.4 Proof of Theorem 1.1 and Corollary 1.2 -- References -- Hypergeometric Functions over Finite Fields and Modular Forms: A Survey and New Conjectures -- 1 Introduction -- 2 Preliminaries -- 3 Weight Two Newforms -- 4 Higher Weight Newforms -- 4.1 The Conjectures of Rodriguez Villegas -- 4.2 Conjectures of Evans -- 4.3



Relations with Ramanujan's τ-Function -- 4.4 Other Relations -- 5 Trace Formulas for Hecke Operators -- 6 New Relations -- References -- Ballistic Transport for Periodic Jacobi Operators on Zd -- 1 Introduction -- 2 Decomposition of J -- 3 Ballistic Motion -- References -- Perspectives on General Left-Definite Theory -- 1 Introduction -- 1.1 Notation -- 2 Sturm-Liouville Operators -- 3 Left-Definite Theory -- 4 Comparison with BKV Semi-Bounded Form Theory -- 5 Scale of Spaces from Singular Perturbation Theory -- 6 Perturbation Setup -- Appendix: Extension Theory -- References -- Sampling in the Range of the Analysis Operator of a Continuous Frame Having Unitary Structure -- 1 Statement of the Problem -- 2 Some Preliminaries -- 2.1 Continuous and Discrete Frames.

2.2 Discrete Convolution Systems and Frames of Translates -- 3 The Subspace of L2(G) Where the Sampling Is Carried Out -- 3.1 Sampling Data as a Filtering Process -- 4 The Main Sampling Result and Consequences -- 4.1 Sampling at a Subgroup R with Finite Index in H -- 4.2 Additional Notes and Remarks -- 4.3 The Case of a Semi-Direct Product of Groups -- Euclidean Motion Group and Crystallographic Subgroups -- 4.4 Some Final Comments -- References -- An Extension of the Coherent Pair of Measures of the Second Kind on the Unit Circle -- 1 Introduction -- 2 Coherent Pairs of Measures of the Second Kind -- 2.1 The Case dμ1(z) = 12πi zdz -- 2.2 The Case dμ1(z)=1|z-u|212πi zdz, u≠0 -- 2.3 A General Case -- 3 Hessenberg Matrices -- 4 Sobolev OPUC -- References -- Bessel-Type Operators and a Refinement of Hardy's Inequality -- 1 Introduction -- 2 An Exactly Solvable, Strongly Singular, Periodic Schrödinger Operator -- 3 A Refinement of Hardy's Inequality -- A.1 The Weyl-Titchmarsh-Kodaira m-Function Associated with Ts,F -- B.1 Remarks on Hardy-Type Inequalities -- References -- Spectral Theory of Exceptional Hermite Polynomials -- 1 Introduction -- 2 Some Spectral Theory -- 3 The Formal Theory of Exceptional Hermite Polynomials -- 3.1 Multi-Step Factorization Chains -- 3.2 The Norm Identity -- 4 The L2 Theory -- References -- Occupation Time for Classical and Quantum Walks -- 1 Introduction -- 2 A Look at the Classical Discrete Case -- 3 Occupation Times for Quantum Walks -- 4 A Look at the Hadamard Walk -- 5 The Walk with a Constant Coin -- 6 The Even Verblunsky Coefficients Tend to One -- 7 A Look at the Riesz Walk -- References -- On Foci of Ellipses Inscribed in Cyclic Polygons -- 1 Introduction -- 2 Background and Notation -- 3 The Quadrilateral Case -- 4 The Hexagon Case -- 5 The Pentagon Case -- References -- A Differential Analogue of Favard's Theorem.

1 Introduction -- 2 The Main Theory -- 2.1 Fundamental Results -- 2.2 Relation to Existing Work -- 3 Examples -- 3.1 Jacobi -- 3.2 Hermite -- 3.3 Generalized Hermite -- 3.4 Laguerre -- 3.5 Generalized Laguerre -- 3.6 Continuous Hahn -- 4 Computational Considerations -- 4.1 Computation of Expansion Coefficients -- 4.2 Approximation Theory on the Real Line -- 5 Periodic Bases Arising from Discrete Orthogonal Polynomials -- 6 Challenges and Outlook -- 6.1 Transform Pairs -- 6.2 Location of Zeros -- 6.3 Sobolev Orthogonality -- 6.4 Beyond the Canonical Form -- 6.5 A Freudian Slip-Why We Need More Polynomials -- References -- Intrinsic Properties of Strongly Continuous Fractional Semigroups in Normed Vector Spaces -- 1 Introduction -- 2 Background -- 2.1 Logarithmic Norms on Banach Spaces -- 2.2 Logarithmic Norm Bounds of Classical Semigroups -- 3 Fractional Semigroups -- 3.1 Mittag-Leffler and Wright Functions -- 3.2 Logarithmic Norm Bounds of Fractional Semigroups -- 4 Conclusions and Future Endeavors -- References -- The BFK-gluing Formula for Zeta-determinants and the Conformal Rescaling of a Metric



-- 1 Introduction -- 2 The Metric Rescaling and Invariance Theory -- 3 Proof of Theorem 1 -- 4 Conclusions -- References -- New Representations of the Laguerre-Sobolev and Jacobi-Sobolev Orthogonal Polynomials -- 1 Introduction -- 2 Two Representations of the Laguerre-Sobolev Polynomials -- 3 New Representations of the Jacobi-Sobolev Polynomials -- References -- Compactness, or Lack Thereof, for the Harmonic Double Layer -- 1 Compactness of the Harmonic Double Layer Operator on Lebesgue Spaces -- 2 Failure of Compactness for the Harmonic Double Layer Operator -- References -- Weighted Chebyshev Polynomials on Compact Subsets of the Complex Plane -- 1 Introduction -- 2 Existence, Uniqueness, and Characterization of Weighted Chebyshev Polynomials.

3 Bounds for Weighted Chebyshev Polynomials -- References -- The Eichler Integral of E2 and q-brackets of t-hook Functions -- 1 Introduction and Statement of Results -- 2 Nuts and Bolts -- 2.1 A Formula of Han -- 2.2 A Formula of Berndt -- 3 Proofs of Results -- 4 Some Examples -- References.

2.

Record Nr.

UNISALENTO991002289009707536

Autore

Fuiano, Michele

Titolo

Citta e borghi in Puglia nel Medio Evo : Capitanata / Michele Fuiano

Pubbl/distr/stampa

Napoli : Libreria scientifica, 1972

Descrizione fisica

200 p. ; 25 cm.

Soggetti

Puglia - Citta

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



3.

Record Nr.

UNINA9910811905003321

Titolo

Science and politics : an A-to-Z guide to issues and controversies / / edited by Brent S. Steel, Oregon State University

Pubbl/distr/stampa

Los Angeles : , : CQ Press, , 2015

ISBN

1-4833-6871-8

1-4833-6872-6

1-4833-4631-5

1-4833-4632-3

1-78402-591-7

Descrizione fisica

1 online resource (xxviii, 601 pages)

Collana

Gale eBooks

Disciplina

338.97306

Soggetti

Science - Political aspects - United States

Science and state - United States

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Includes index.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

COVER ; TITLE PAGE; COPYRIGHT PAGE ; CONTENTS ; LIST OF ENTRIES ; READER'S GUIDE ; ABOUT THE EDITOR ; CONTRIBUTORS ; INTRODUCTION ; A; B; C; D; E; F; G; H; I; K; M; N; O; P; R; S; T; U; V; W; INDEX

Sommario/riassunto

This A-to-Z reference features 120-150 entries that explore the nexus of politics and science, both in the United States and in U.S. interactions with other nations. The essays, each by experts in their fields, examine: health, environmental, and social/cultural issues relating to science and politics; concerns relating to government regulation and its impact on the practice of science; key historical and contemporary events that have shaped our contemporary view of how science and politics intersect.