1.

Record Nr.

UNISALENTO991002142449707536

Autore

Kuhn, Thomas

Titolo

Die judisch-hellenistischen Epiker Theodot und Philon : literarische Untersuchungen, kritische Edition und Ubersetzung der Fragmente / Thomas Kuhn

Pubbl/distr/stampa

Gottingen : Ruprecht, 2012

ISBN

9783846900857

Descrizione fisica

91 p. ; 22 cm

Collana

Vertumnus ; 29

Altri autori (Persone)

Theodotus : Ancyranus

Philo : Alexandrinus

Disciplina

880

Soggetti

Scrittori ebrei - Letteratura ellenistica

Lingua di pubblicazione

Tedesco

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Contiene riferimenti bibliografici



2.

Record Nr.

UNINA9910350312803321

Autore

Azizi Aydin

Titolo

Applications of Artificial Intelligence Techniques in Industry 4.0 / / by Aydin Azizi

Pubbl/distr/stampa

Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2019

ISBN

981-13-2640-1

Edizione

[1st ed. 2019.]

Descrizione fisica

1 online resource (70 pages)

Collana

SpringerBriefs in Applied Sciences and Technology, , 2191-5318

Disciplina

658.0563

Soggetti

Telecommunication

Artificial intelligence

Industrial Management

Communications Engineering, Networks

Artificial Intelligence

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Introduction -- Modern Manufacturing -- RFID Network Planning -- Hybrid Artificial Intelligence Optimization Technique -- Implementation.

Sommario/riassunto

This book is to presents and evaluates a way of modelling and optimizing nonlinear RFID Network Planning (RNP) problems using artificial intelligence techniques. It uses Artificial Neural Network models (ANN) to bind together the computational artificial intelligence algorithm with knowledge representation an efficient artificial intelligence paradigm to model and optimize RFID networks. This effort leads to proposing a novel artificial intelligence algorithm which has been named hybrid artificial intelligence optimization technique to perform optimization of RNP as a hard learning problem. This hybrid optimization technique consists of two different optimization phases. First phase is optimizing RNP by Redundant Antenna Elimination (RAE) algorithm and the second phase which completes RNP optimization process is Ring Probabilistic Logic Neural Networks (RPLNN). The hybrid paradigm is explored using a flexible manufacturing system (FMS) and the results are compared with well-known evolutionary optimization technique namely Genetic Algorithm (GA) to demonstrate the feasibility



of the proposed architecture successfully.