| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISALENTO991001985179707536 |
|
|
Autore |
Borgia, Luigi |
|
|
Titolo |
Le biccherne : tavole dipinte delle magistrature senesi, secoli 13.-18. / a cura di L. Borgia ... [et al.] |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Roma : [Le Monnier], 1984 |
|
|
|
|
|
|
|
Descrizione fisica |
|
vii, 389 p. : ill. ; 30 cm. |
|
|
|
|
|
|
Soggetti |
|
Pitture della Biccherna |
Siena - Biccherna |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
In testa al front.: Ministero per i beni culturali e ambientali, Ufficio centrale per i beni archivistici. - In custodia. |
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNISALENTO991001398259707536 |
|
|
Autore |
Bruzzone, Daniele |
|
|
Titolo |
Ricerca di senso e cura dell'esistenza : il contributo di Viktor E. Frankl a una pedagogia fenomenologico-esistenziale / Daniele Bruzzone |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Gardolo, Trento : Erickson, 2007 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
Collana di pedagogia fenomenologica |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Logoterapia |
Pedagogia - Teorie |
Frankl, Viktor Emil, 1905-1997 |
Frankl, Viktor Emil, 1905-1997 |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910809249603321 |
|
|
Autore |
Lange Christoph |
|
|
Titolo |
Enabling collaboration on semiformal mathematical knowledge by semantic web integration / / Christoph Lange |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Heidelberg, Germany : , : IOS Press : , : AKA, , 2011 |
|
©2011 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (610 p.) |
|
|
|
|
|
|
Collana |
|
Studies on the Semantic Web, , 1868-1158 ; ; Volume 011 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Knowledge representation (Information theory) |
Semantic Web |
Mathematics |
OMDoc (Document markup language) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Title Page; Contents; Abstract; Acknowledgments; Part I. Introduction; Chapter 1. Web Collaboration on Mathematical Knowledge; Current Practices of ""Doing Mathematics""; Enabling Management, Understanding, and Application of Mathematical Knowledge; Web 2.0 and Semantic Web in Science; Mathematics on the Web - State of the Art and Challenges; Collaborative Mathematics on the Web - Why Retry Now?; Challenges to be Addressed by a New MKM Infrastructure; Structure and Contribution of this Thesis; Part II. Knowledge Representation; Chapter 2. Representing Mathematical Knowledge |
Structures of Mathematical KnowledgeRequirements for Reusably Representing and Exchanging Mathematical Knowledge; Knowledge Representation on the [Semantic] Web (State of the Art); Representing Semiformal Mathematical Knowledge (State of the Art); Designing an Improved Representation and Exchange Language; Chapter 3. Ontologies for Structures of Mathematical Knowledge; Overview of the Ontologies by Structural Dimension; Logical and Functional Structures, and Notation; Rhetorical and Document Structures; Metadata; The Application Environment; Discussions about Knowledge Items |
Requirements for Extracting Structures from Semantic Markup to |
|
|
|
|
|
|
|
|
|
|
|
RDFRelated Work; Conclusion and Future Work; Chapter 4. Using Mathematical Markup for Implementing and Documenting Expressive Ontologies; Problem and Requirements Statement; State of the Art; Implementing and Documenting Heterogeneous Ontologies in OMDoc; Implementation of the OMDoc Ontology; Case Study: Reimplementing FOAF in OMDoc; Related Work; Conclusion and Future Work; Chapter 5. Multi-Dimensional Metadata Markup; The Metadata Syntax of OMDoc 1.2 (State of the Art); The new OMDoc+RDFa Metadata Framework; Related Work |
ConclusionPart III. Services and their Integration; Chapter 6. Primitive Services for Managing Mathematical Knowledge; Tasks, Scenarios, and Required Primitive Services; Editing; Validating; Human- and Machine-Comprehensible Publishing; Information Retrieval; Arguing about Problems and their Solutions; Conclusion; Chapter 7. Integrating Assistive Services into Interactive Documents; State of the Art and Related Work; Requirements for Integrating Services into Documents; The JOBAD Architecture; In-Document Client Services; Symbol-based Client Services; Expression-based Client Services |
Conclusion and Future WorkChapter 8. Transparent Translations in Knowledge Bases; Extracting Structures from Semantic Markup; Migration to More Expressive Languages; Coping with Different Representation Granularities on Import and Export; Recommendations for Running Translations Transparently; Conclusion; Chapter 9. The Semantic Wiki SWiM - An Integrated Collaboration Environment; Wikis and Semantic Wikis (State of the Art); Requirements Analysis and Design Decisions; Architecture; How SWiM Supports OpenMath CD Maintenance Workflows; Related Work; Conclusion and Future Work |
Chapter 10. Usability Evaluation of an Integrated Environment for Maintaining Semiformal Collections |
|
|
|
|
|
|
Sommario/riassunto |
|
Mathematics is becoming increasingly collaborative, but software does not sufficiently support that: Social Web applications do not currently make mathematical knowledge accessible to automated agents that have a deeper understanding of mathematical structures. Such agents exist but focus on individual research tasks, such as authoring, publishing, peer-review, or verification, instead of complex collaboration workflows. This work effectively enables their integration by bridging the document-oriented perspective of mathematical authoring and publishing, and the network perspective of threaded |
|
|
|
|
|
|
|
| |