1.

Record Nr.

UNICAMPANIASUN0089682

Autore

Diodorus Siculus

Titolo

1: Libri 1.-3. / Diodoro Siculo ; a cura di Giuseppe Cordiano e Marta Zorat

Pubbl/distr/stampa

Milano : BUR, 2006

ISBN

88-17-10021-8

Edizione

[2. ed]

Descrizione fisica

837 p. : 18 cm.  - Testo greco a fronte.

Lingua di pubblicazione

Italiano

Greco antico

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNISALENTO991001266679707536

Autore

Wegner, Peter

Titolo

Programming languages, information structures, and machine organization / Peter Wegner

Pubbl/distr/stampa

New York : McGraw-Hill, c1968

Descrizione fisica

xx, 401 p. ; 24 cm.

Collana

McGraw-Hill computer sciences series

Classificazione

AMS 68N15

Disciplina

005.13

Soggetti

Programming languages

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



3.

Record Nr.

UNINA9910595073903321

Autore

González Francisco Martínez

Titolo

Applied Mathematics and Fractional Calculus

Pubbl/distr/stampa

Basel, 2022

Descrizione fisica

1 online resource (438 p.)

Soggetti

Mathematics and Science

Research and information: general

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Sommario/riassunto

In the last three decades, fractional calculus has broken into the field of mathematical analysis, both at the theoretical level and at the level of its applications. In essence, the fractional calculus theory is a mathematical analysis tool applied to the study of integrals and derivatives of arbitrary order, which unifies and generalizes the classical notions of differentiation and integration. These fractional and derivative integrals, which until not many years ago had been used in purely mathematical contexts, have been revealed as instruments with great potential to model problems in various scientific fields, such as: fluid mechanics, viscoelasticity, physics, biology, chemistry, dynamical systems, signal processing or entropy theory. Since the differential and integral operators of fractional order are nonlinear operators, fractional calculus theory provides a tool for modeling physical processes, which in many cases is more useful than classical formulations. This is why the application of fractional calculus theory has become a focus of international academic research. This Special Issue "Applied Mathematics and Fractional Calculus" has published excellent research studies in the field of applied mathematics and fractional calculus, authored by many well-known mathematicians and scientists from diverse countries worldwide such as China, USA, Canada, Germany, Mexico, Spain, Poland, Portugal, Iran, Tunisia, South Africa, Albania, Thailand, Iraq, Egypt, Italy, India, Russia, Pakistan, Taiwan, Korea,



Turkey, and Saudi Arabia.